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Abstract—We consider multi–hop networks comprising Binary
Symmetric Channels (BSCs). The network carries unicast flows
for multiple users. The utility of the network is the sum of the
utilities of the flows, where the utility of each flow is a concave
function of its throughput. Given that the network capacity is
shared by the flows, there is a contention for network resources
like coding rate (at the physical layer), scheduling time (at the
MAC layer), etc., among the flows. We propose a proportional
fair transmission scheme that maximises the sum utility of flow
throughputs subject to the rate and the scheduling constraints.
This is achieved by jointly optimising the packet coding rates of
all the flows through the network.

Index Terms—Binary symmetric channels, code rate selection,
cross–layer optimisation, network utility maximisation, schedul-
ing

I. INTRODUCTION

In a communication network, the network capacity is shared

by a set of flows. There is a contention for resources among

the flows, which leads to many interesting problems. One such

problem, is how to allocate the resources optimally across

the (competing) flows, when the physical layer is erroneous.

Specifically, schedule/transmit time for a flow is a resource

that has to be optimally allocated among the competing

flows. In this work, we pose a network utility maximisation

problem subject to scheduling constraints that solve a resource

allocation problem.

We consider packet communication over multi–hop net-

works comprising of Binary Symmetric Channels (BSCs,

[1]). The network consists of a set of C ≥ 1 cells C =
{1, 2, · · · , C} which define the “interference domains” in the

network. We allow intra–cell interference (i.e transmissions by

nodes within the same cell interfere) but assume that there is

no inter–cell interference. This captures, for example, common

network architectures where nodes within a given cell use the

same radio channel while neighbouring cells using orthogonal

radio channels. Within each cell, any two nodes are within the

decoding range of each other, and hence, can communicate

with each other. The cells are interconnected using multi–

radio bridging nodes to create a multi–hop wireless network.

A multi–radio bridging node i connecting the set of cells

B(i) = {c1, .., cn} ⊂ C can be thought of as a set of n single
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Fig. 1. An illustration of a wireless mesh network with 4 cells. Cells a,
b, c, and d use orthogonal channels CH1, CH2, CH3, and CH4 respectively.
Nodes 3, 5, and 6 are bridge nodes. The bridge node 3 (resp. 5 and 6) is
provided a time slice of each of the channels CH1 & CH2 (resp. CH2 &
CH4 for node 5 and CH2& CH3& CH4 for node 6). Three flows f1, f2,
and f3 are considered. In this example, Cf1 = {a, b}, Cf2 = {d, b, a}, and
Cf3 = {c, d}.

radio nodes, one in each cell, interconnected by a high–speed,

loss–free wired backplane (see Figure 1).

Data is transmitted across this multi–hop network as a set F
= {1, 2, · · · , F}, F ≥ 1 of unicast flows. The route of each

flow f ∈ F is given by Cf = {c1(f), c2(f), · · · , cℓf (f)},

where the source node s(f) ∈ c1(f) and the destination node

d(f) ∈ cℓf (f). We assume loop–free flows (i.e., no two cells

in Cf are same). Figure 1 illustrates this network setup. A

scheduler assigns a time slice of duration Tf,c > 0 time

units to each flow f that flows through cell c, subject to the

constraint that
∑

f :c∈Cf
Tf,c ≤ Tc where Tc is the period of the

schedule in cell c. We consider a periodic scheduling strategy

in which, in each cell c, service is given to the flows in a

round robin fashion, and that each flow f in cell c gets a time

slice of Tf,c units in every schedule.

The scheduled transmit times for flow f in source cell c1(f)
define time slots for flow f . We assume that a new information

packet arrives in each time slot, which allows us to simplify
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the analysis by ignoring queueing. Information packets of each

flow f at the source node S(f) consist of a block of kf
symbols. Each packet of flow f is encoded into codewords

of length nf = kf/rf symbols, with coding rate 0 < rf ≤ 1.

The code employed for encoding is discussed in Section II.

We require sufficient transmit times at each cell along route Cf
to allow nf coded symbols to be transmitted in every schedule

period. Hence there is no queueing at the cells along the route

of a flow.

Channel Model: The channel in cell c for flow f is

considered to be a binary symmetric channel (BSC) with the

cross–over probability (i.e., the probability of a bit error) being

αf,c ∈ [0, 1]. The corresponding transition probability matrix

is thus given by

Hf,c(αf,c) =

[
1− αf,c αf,c

αf,c 1− αf,c

]
.

Thus, the end–to–end channel for flow f is a cascaded

channel (of ℓf BSCs), which is a BSC, with the transition

probability matrix Hf (αf ) =
∏

c∈Cf
Hf,c(αf,c), the cross–

over probability of which is given by

αf =
∑

{xc∈{0,1},c∈Cf :
∑

c∈Cf

xc is odd}

∏

c∈Cf

αxc

f,c (1− αf,c)
1−xc .

Since, each transmitted symbol in a packet of a flow can,

in general, take values from a 2m = M–ary alphabet, there

are m channel uses of the BSC for every transmitted symbol.

Thus, the symbol error probability (for any m ≥ 1) is given

by βf = 1 − (1 − αf )
m. Let the Bernoulli random variable

Ef [i] indicate the end–to–end error of the ith coded symbol

at the destination in a code word of flow f . Note that Ef [i]s
are independent and identically distributed (i.i.d.), and that

P{Ef [i] = 1} = βf = 1−P{Ef [i] = 0}. In the channel model

described, the channel processes across time are independent

copies of the BSCs. This is realised in a wireless network

by means of an interleaver of sufficient depth (after the

channel encoder), which interleaves the encoded symbols. The

interleaved symbols see a fading channel (which is modelled as

a channel with memory, e.g., a Gilbert–Elliot channel [2]), but

the de–interleaver (before the channel decoder) brings back the

original sequence of the encoded symbols, but interleaves the

channel fades, the combined effect of which can be modelled

as independent channel processes across time. In another

work [3], we model the fading channel as a packet erasure

channel (or a block fading channel), and obtain the optimal

transmission strategy, which includes optimal interleaving of

bits across schedules and the optimal coding rates.

Letting ef (rf ) denote the error probability that a packet fails

to be decoded, the expected number of information symbols

successfully received is Sf (rf ) = kf (1−ef (rf )). Other things

being equal, one expects that decreasing rf (i.e., increasing

the number of redundant symbols nf − kf ) decreases error

probability ef , and so increases Sf . However, since the

network capacity is limited, and is shared by multiple flows,

increasing the coded packet size nf1 of flow f1 generally

requires decreasing the packet size nf2 for some other flow

f2. That is, increasing Sf1 comes at the cost of decreasing

Sf2 . We are interested in understanding this trade–off, and in

analysing the optimal fair allocation of coding rates amongst

users/flows.

Contributions: Our main contribution is the analysis of

fairness in the allocation of coding rates between users/flows

competing for limited network capacity. In particular, we pose

a resource allocation problem in the utility–fair framework,

and propose a scheme for obtaining the proportional fair

allocation of coding rates, i.e. the allocation of coding rates

that maximises
∑

f∈F logSf (rf ) subject to network capacity

constraints (or scheduling constraints). Specifically, at the

physical layer, the (channel) coding rate of a flow can be

lowered (to alleviate its channel errors) only at the expense of

increasing the coding rates of other flows. Also, at the network

layer, the length of schedules of each flow should be chosen in

such a way that it maximises the network utility. Interestingly,

we show in our problem formulation that the coding rate and

the scheduling are tightly coupled. Also, we show that for a log
(network) utility function (which typically gives proportional

fair allocation of resources) the optimum rate allocation (in

general) gives unequal air–times which is quite different from

the previously known result of proportional fair allocation

being the same as that of equal air–time allocation ([4]). This

problem, which we show in Section III, requires solving a

non–convex optimisation problem. Our work differs from the

previous work on network utility maximisation (see [5] and

the references therein) in the following manner. To the best of

our knowledge, this is the first work that computes the optimal

coding rate for a given scheduling (or capacity) constraints in

the utility–optimal framework.

The rest of the paper is organised as follows. In Section II,

we obtain a measure for the end–to–end packet decoding error,

and describe the throughput of the network. In Section III, we

formulate a network utility maximisation problem subject to

constraints on the transmission schedule lengths. We obtain

the optimum coding rates for each flow in the network in

Section IV. In Section V, we provide some simple examples

to illustrate our results. The proofs of various Lemmas are

omitted due to lack of space.

II. PACKET ERROR PROBABILITY

We recall that each transmitted symbol of flow f reaches

the destination node erroneously with probability βf . Hence,

to recover the information packets, we employ a block code

at the source nodes (a convolutional code with zero–padding

is also a block code). Since an (n, k, d) code can correct up

to ⌊d−1
2 ⌋ errors, we are interested in employing a code with a

large distance d. Thus, a natural choice is the class of (linear)

maximum–distance separable (MDS) codes. MDS codes of

rate k/n have the property that it achieves the Singleton bound

([6]),

d 6 n− k + 1, (1)
i.e., the minimum distance between any two codewords d, in

an MDS code is n − k + 1. Thus, the maximum number of

errors that an MDS code can correct is
⌊
d−1
2

⌋
=
⌊
n−k
2

⌋
. It is

well known that in the case of binary signalling, only trivial
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MDS codes exist. Hence, in this paper, we consider M = 2m–

ary alphabet, where m > 1. Examples for MDS codes in the

case of non–binary alphabets include Reed–Solomon codes

([6]), and MDS–convolutional codes ([7]). In [7], the authors

show the existence of MDS–convolutional codes for any code

rate. We note here that Reed–Solomon codes can also correct

burst errors, and hence, is more suitable for wireless networks

(which does not employ an interleaver).

A. Network Constraints on Coding Rate

Based on the modulation and the bandwidth available at

each cell c, a flow f , which passes through it, can obtain a

maximum feasible physical (PHY) rate of transmission in bits

per second that the cell c can support. Let wf,c be the PHY

rate of transmission of flow f in cell c. For each transmitted

packet of flow f , each cell c ∈ Cf along its route must allocate

at least
nf

wf,c
units of time to transmit the packet (or encoded

block) where we recall that nf is the length of the code word.

Let Fc := {f ∈ F : c ∈ Cf} be the set of flows that are routed

through cell c. We recall that the transmissions in any cell c
are scheduled in a TDMA fashion, and hence, the total time

required for transmitting packets for all flows in cell c is given

by
∑

f∈Fc

nf

wf,c
. Since, for cell c, the transmission schedule

interval is Tc units of time, the coding rates rf must satisfy

the schedulability constraint
∑

f∈Fc

kf

rfwf,c
6 Tc.

B. Error Probability – Upper bound

The symbol errors Ef [1], Ef [2], · · · , Ef [nf ] are i.i.d.

Bernoulli random variables, and hence, the probability of

a codeword (or encoded packet) being decoded incorrectly

is given by P

{∑nf

i=1 Ef [i] >
nf−kf

2

}
. We observe that

∑nf

i=1 Ef [i] is a binomial random variable, and hence, the

probability of decoding error can be computed exactly. How-

ever, the exact probability of error is not tractable for further

optimisation as the probability of error, which is a function of

the coding rate, is neither concave nor convex. Hence, we pose

the problem based on the upper bound on the error probability

So, we obtain an upper bound and a lower bound for the error

probability. We show that the bounds are tight, and hence, the

problem of network utility maximisation can be posed based

on the lower bound on the error probability.

Lemma 1. An upper bound for the end–to–end probability of

a packet decoding error for flow f is bounded by the following.

ẽf = P

{
nf∑

i=1

Ef [i] >
nf − kf

2

}

≤ exp

(
−
kf
rf

IEf [1]

(
1− rf

2
; θf

))
(2)

=: ef (θf , rf ).

where θf > 0 is the Chernoff–bound parameter and the

function IZ(x; θ) := θx − ln(E
[
eθZ
]
) is called the rate

function in large deviations theory.

C. Error Probability – Lower bound

Lemma 2. The end–to–end probability of a packet decoding

error for flow f is at least as large as

ẽf ≥

[
βf

1− βf

exp

(
−

kf
1− 2xf

H(B(xf ))

)]

· exp

(
−

kf
1− 2xf

D(B(xf )‖B(βf ))

)
(3)

where B(x) is the Bernoulli distribution with parameter x,

H(P) is the entropy of probability mass function (pmf) P ,

and D(P‖Q) is the information divergence between the pmfs

P and Q.

From the lower and the upper bounds for the probability of

packet decoding error, and for the optimal θ∗f (see Eqn. (15)

in Section IV), we see that the exponent of the lower bound

is the same as that of the upper bound (Eqn. (15)) with a pre–

factor. This motivates us to work with the lower bound ef as

a candidate to compute the utility of flow f , which is given

by ln(kf (1− ef )).
We recall that Ef [1] is a Bernoulli random variable which

takes 1 with probability βf , and 0 with probability 1 − βf .

Thus IEf [1]

(
1−rf

2 ; θf

)
= θf

(
1−rf

2

)
− ln

(
1− βf + βfe

θf
)
.

Let xf :=
1−rf

2 . Note that 0 6 xf < 1
2 . Therefore, from

Eqn. (2),

ef (θf , xf ) := exp

(
−

kf
1− 2xf

[
θfxf − ln

(
1− βf + βfe

θf
)])

(4)

III. NETWORK UTILITY MAXIMISATION

We are interested in maximising the utility of the network

which is defined as the sum utility of flow throughputs.

We consider the log of throughput as the candidate for the

utility function being motivated by the desirable properties

like proportional fairness that it possesses.

We define the following notations: Chernoff–bound parame-

ters θ := [θf ]f∈F , code rates r := [rf ]f∈F , and x parameters

x := [xf ]f∈F (where we recall that xf = (1 − rf )/2). We

define the network utility as

Ũ (θ,x) :=
∑

f∈F

ln (kf (1− ef (θf , xf )))

=
∑

f∈F

ln (kf ) +
∑

f∈F

ln (1− ef (θf , xf )) . (5)

The problem is to obtain the optimum coding rate parameter

x∗ and the optimum Chernoff–bound parameter θ∗, which

maximises the network utility. Since, kf , the size of informa-

tion packets of each flow f is given, maximising the network

utility is equivalent to maximising

U(θ,x) :=
∑

f∈F

ln (1− ef (θf , xf )) . (6)

Thus, we define the following problem
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P1:

max
θ,x

U(θ,x) =
∑

f∈F

ln (1− ef (θf , xf ))

subject to
∑

f :c∈Cf

kf

(1− 2xf )wf,c

≤ Tc, ∀c ∈ C (7)

θf > 0, ∀f ∈ F

xf ≤ λf ∀f ∈ F

xf ≥ λf ∀f ∈ F

(8)
We note that the Eqn. (7) enforces the network capacity

(or the network schedulability) constraint. The objective

function U(θ,x) is separable in (θf , xf ) pair for each flow

f . Importantly, the component of utility function for each

flow f given by ln (1− ef (θf , xf )) is not jointly concave in

(θf , xf ). However, ln (1− ef (θf , xf )) is concave in θf (for

any xf ), and in xf (for any θf ). Hence, the network utility

maximisation problem P1 is not in the standard convex

optimisation framework. Instead, we pose the following

problem,

P2:

max
θ

max
x

∑

f∈F

ln (1− ef (θf , xf )) (9)

subject to
∑

f :c∈Cf

kf

(1− 2xf )wf,c

≤ Tc, ∀c ∈ C

θf > 0, ∀f ∈ F

xf ≤ λf ∀f ∈ F

xf ≥ λf ∀f ∈ F

(10)
In general, the solution to P2 need not be the same as the

solution to P1. However, in our problem, we show that P2

achieves the solution of P1.

Lemma 3. . For a function f : Y × Z → R that is concave

in y and in z, but not jointly in (y, z), the solution to the joint

optimisation problem for convex sets Y and Z

max
y∈Y,z∈Z

f(y, z) (11)

is the same as

max
z∈Z

max
y∈Y

f(y, z), (12)

if f(y∗(z), z) is a concave function of z, where for each z ∈ Z ,

y∗(z) := argmax
y∈Y

f(y, z).

We note that for each xf , the probability of error ef (θf , xf )
is convex in θf , and hence, ln(1−ef ) is concave in θf . Thus,

we first solve for the optimum Chernoff bound parameter θ∗

which we describe in Section IV-A. After having solved for

the optimum θ∗, we show in Section IV-B that U(θ∗(x),x) is

a concave function of x. Hence, from Lemma 3, the solution

to problem (P2) (the maximisation problem that separately

obtains the optimum θ∗ and optimum x∗) is globally optimum.

We study the rate optimisation problem that obtains x∗ in

Section IV-C.

IV. UTILITY OPTIMUM RATE ALLOCATION

A. Optimal θ∗

Consider the following optimisation problem, for any given

x ∈ [λf , λf ]
F .

max
θ

∑

f∈F

ln (1− ef (θf , xf )) (13)

subject to θf > 0, ∀f ∈ F

We note that the objective function is separable in θf s, and that

ef is convex in θf . Hence, the problem defined in Eqn. (13),

is a concave maximisation problem. We recall that

ef (θf , xf ) = exp

(
−

kf
1− 2xf

[
θfxf − ln

(
1− βf + βfe

θf
)])

.

(14)

The partial derivative of ef with respect to θf is given by

∂ef
∂θf

= ef ·
−kf

1− 2xf

[
xf −

βfe
θf

1− βf + βfeθf

]
.

Observe that
βfe

θf

1−βf+βfe
θf

is an increasing function of θf . Thus,

if, for θf = 0, xf −
βf

1−βf+βf
< 0 or xf < βf (equivalently,

rf > 1 − 2βf ), the derivative is positive for all θf > 0, or

ef is an increasing function of θf . Hence, for xf < βf , the

optimum θ∗f is arbitrarily close to 0 which yields ef arbitrarily

close to 1. Thus, for error recovery, for any end–to–end error

probability βf , the coding rate should be smaller than 1−2βf ,

in which case, we obtain the optimal θ∗f by equating the partial

derivative of ef with respect to θf to zero.

i.e.,
βfe

θ∗
f

1−βf+βfe
θ∗
f

= xf

or, eθ
∗
f =

xf

βf

1−βf

1−xf

or, θ∗f = ln
(

xf

βf

)
− ln

(
1−xf

1−βf

)
.

The probability of error for a given xf and θ∗f (xf ) is then

given by

ef (θ
∗
f , xf )

= exp

(
−

kf
1− 2xf

[
xf ln

(
xf

βf

)
+ (1− xf ) ln

(
1− xf

1− βf

)])

= exp

(
−

kf
1− 2xf

D(B(xf )||B(βf )

)
(15)

B. A convex optimisation framework to obtain optimal x∗
f

If ln(1− ef (θ
∗
f (xf ), xf )) is a concave function of xf , then

one can obtain the optimum x∗
f using convex optimisation

framework. To show the concavity of ln(1− ef (θ
∗
f (xf ), xf )),

it is sufficient to show that ef (θ
∗
f (xf ), xf ) is convex in xf .

Define Λf := ln
(

xf (1−xf )
βf (1−βf )

)
. Note that

∂ef
∂xf

= −ef ·
kfΛf

(1− 2xf )2

∂2ef
∂x2

f

=

[
ef ·

kf
(1− 2xf )2

]

·

[
kf

(1− 2xf )2
Λ2
f −

4Λf

1− 2xf

−
1− 2xf

xf (1− xf )

]
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ef (θ
∗
f (xf ), xf ) is convex if

kf
(1− 2xf )2

Λ2
f ≥

4Λf

1− 2xf

+
1− 2xf

xf (1− xf )
,

or,

4(1− 2xf )

Λf

+
(1− 2xf )

3

xf (1− xf )Λ2
f

≤ kf

Since, we consider xf > λf , where λf = βf + ǫf for

some arbitrarily small ǫf > 0, we have 1
Λ2

f

6 K2
0 where

1/K0 := ln
(

λf (1−λf )

βf (1−βf )

)
, and hence, a sufficient condition for

the convexity of ef (and hence, the concavity of ln(1 − ef ))
is

4(1− 2xf )

Λf

+K2
0

(1− 2xf )
3

xf (1− xf )
≤ kf (16)

The above condition is a convex function of xf , and we

include this as a constraint in the problem formulation. Thus,

ef (θ
∗
f (xf ), xf ) is convex in xf , and hence, we obtain the

optimal x∗
f using convex optimisation method. Also, from

Lemma 3, the optimal coding rate r∗f = 1 − 2x∗
f is unique

and globally optimum.

The minimum kf required to ensure convexity of

ef (θ
∗
f (xf ), xf ) is computed numerically, and is tabulated

below.

TABLE I
MINIMUM kf THAT ENSURES CONVEXITY OF ef (θ

∗
f
(xf ), xf )

βf minimum kf required

0.1 6
0.01 10
0.001 33
0.0001 164

From the above table, we see that the minimum packet size

required to ensure convexity is very small, and in practice,

the packet size kf is much larger than the minimum size re-

quired. Hence, for all practical purposes, the optimal code rate

problem is a convex problem. More importantly, the constraint

given by Eqn. (16) is not an active constraint. However, for

the sake of completeness, we include this constraint in the

problem definition below.

C. Optimal Coding Rate r

In this subsection, we obtain the optimal coding rate using

the optimal Chernoff–bound parameter vector θ∗, by solving

the following network utility maximisation problem

max
x

∑

f∈F

ln
(
1− ef (θ

∗
f , xf )

)
(17)

subject to
∑

f :c∈Cf

kf
(1− 2xf )wf,c

≤ Tc, ∀c ∈ C

xf ≤ λf ∀f ∈ F

xf ≥ λf ∀f ∈ F

4(1− 2xf )

Λf

+K2
0

(1− 2xf )
3

xf (1− xf )
≤ kf ∀f ∈ F

(18)

The objective function is separable and concave, and hence,

can be solved using Lagrangian relaxation method. Also, the

constraint represented by Eqn. (18) is not an active constraint,

and hence, there is no Lagrangian cost to this constraint. We

note here that the coding rate should be such that kf/(1−2xf )
is an integer, and hence, obtaining x∗

f is a discrete optimisation

problem. This is, in general, an NP hard problem. Hence, we

relax this constraint, and allow xf to take any real value in

[λf , λf ]. The Lagrangian function for the optimal rate problem

is thus

L(x,p,u,v)

=
∑

f∈F

ln
(
1− ef (θ

∗
f , xf )

)
−
∑

c∈C

pc



∑

f∈Fc

kf
(1− 2xf )wf,c

− Tc




+
∑

f∈F

uf

(
xf − λf

)
−
∑

f∈F

vf
(
xf − λf

)

Applying KKT condition, ∂L
∂xf

|x∗
f
= 0, we have

−1

1− ef

∂ef
∂xf

|x∗
f
=
∑

c∈Cf

pc
wf,c

2kf
(1− 2x∗

f )
2
+ vf − uf

=
2kf

(1− 2x∗
f )

2



∑

c∈Cf

pc
wf,c


+ vf − uf

ef
1− ef

·
kfΛ

∗
f

(1− 2x∗
f )

2
=

2kf
(1− 2x∗

f )
2



∑

c∈Cf

pc
wf,c


+ vf − uf

ef
1− ef

Λ∗
f = 2



∑

c∈Cf

pc
wf,c


+

(vf − uf )(1− 2x∗
f )

2

kf

= λf +
(vf − uf )(1− 2x∗

f )
2

kf

where λf := 2
(∑

c∈Cf

pc

wf,c

)
and Λ∗

f := ln
(

x∗
f (1−x∗

f )

βf (1−βf )

)
. If

the optimal x∗
f is either λf or λf , then it is unique. If x∗

f ∈

(λf , λf ), then uf = vf = 0, and in this case (which is the

most interesting case, and we consider only this case for the

rest of the paper), we have

ef
1− ef

· Λ∗
f = λf

ef =
λf

λf + Λ∗
f

(19)

exp

(
−

kf
1− 2x∗

f

D(B(x∗
f )‖B(βf ))

)
=

λf

λf + Λ∗
f

kf
1− 2x∗

f

D(B(x∗
f )‖B(βf )) = ln

(
λf + Λ∗

f

λf

)
(20)

In the above equation, both the LHS and the RHS are

increasing in x∗
f . Also, LHS is a strictly convex (increasing)

function and RHS is a strictly concave (increasing) function

of x∗
f . Hence, they intersect at exactly one point in the region

(βf , 0.5] which is the optimal x∗
f for a given Lagrangian price

vector p.
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D. Sub–gradient Approach to Compute optimal p∗c

In this section, we discuss the procedure to obtain the

optimal shadow costs or the Lagrange variables p∗. The dual

problem for the primal problem defined in Eqn. (17) is given

by

min
p≥0

D(p),

where the dual function D(p) is given by

D(p)

= max
x

∑

f∈F

ln(1− ef (xf )) +
∑

c∈C

pc


Tc −

∑

f∈Fc

kf

(1− 2xf )wf,c




(21)

=
∑

f∈F

ln(1− ef (x
∗
f (p))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf

(1− 2x∗
f
(p))wf,c


 .

(22)

In the above equation, ef (xf ) denotes ef (θ
∗
f (xf ), xf ). Since

the dual function (of a primal problem) is convex, D is convex

in p. Hence, we use a sub–gradient method to obtain the

optimum p∗. From Eqn. (21), for any x,

D(p) ≥
∑

f∈F

ln(1− ef (xf )) +
∑

c∈C

pc


Tc −

∑

f∈Fc

kf

(1− 2xf )wf,c


 ,

and in particular, the dual function D(p) is greater than that
for x = x∗

f (p̃), i.e.,

D(p)

≥
∑

f∈F

ln(1− ef (x
∗
f (p̃))) +

∑

c∈C

pc


Tc −

∑

f∈Fc

kf

(1− 2x∗
f
(p̃))wf,c




= D(p̃) +
∑

c∈C

(pc − p̃c)


Tc −

∑

f∈Fc

kf

(1− 2x∗
f
(p̃))wf,c


 (23)

Thus, a sub–gradient of D(·) at any p̃ is given by the vector

Tc −

∑

f∈Fc

kf
(1− 2x∗

f (p̃))wf,c




c∈C

. (24)

We obtain an iterative algorithm based on sub–gradient method

that yields p∗, with p(i) being the Lagrangians at the ith
iteration.

pc(i+ 1) =


pc(i)− γ ·


Tc −

∑

f∈Fc

kf
(1− 2x∗

f (p(i)))wf,c





+

where γ > 0 is a sufficiently small stepsize, and [f(x)]+ :=
max{f(x), 0} ensures that the Lagrange multiplier never goes

negative. Note that the Lagrangian updates can be locally done,

as each cell c is required to know only the rates x∗
f (p(i)) of

flows f ∈ Fc. Thus, at the beginning of each iteration i, the

flows choose their coding rates to 1−2x∗
f (p(i)), and each cell

computes its cost based on the rates of flows through it. The

updated costs along the route of each flow are then fed back

to the source node to compute the rate for the next iteration.

The Lagrange multiplier pc can be viewed as the cost of

transmitting traffic through cell c. The amount of service time

that is available is given by ∆ = Tc −
∑

f∈Fc

kf

(1−2x∗
f
(p(i)))wf,c

.

When ∆ is positive and large, then the Lagrangian cost pc
decreases rapidly (because D is convex), and when ∆ is

negative, then the Lagrangian cost pc increases rapidly to

make ∆ ≥ 0. We note that the increase or decrease of pc
between successive iterations is proportional to ∆, the amount

of service time available. Thus, the sub–gradient procedure

provides a dynamic control scheme to balance the network

load.

We explore the properties of the optimum rate parameter

x∗
f in Section IV-E. In Section V, we provide some examples

that illustrate the optimum utility–fair resource allocation.

E. Properties of x∗
f

We are interested in studying the behaviour of the optimum

coding rate r∗f = 1 − 2x∗
f , when the PHY rate wf,c and

the packet size kf increases such that kf/wf,c is always a

constant.

Lemma 4. r∗f = 1− 2x∗
f (kf ) is an increasing function of kf

(with the PHY rate wf,c being proportional to kf ).

Lemma 4 is quite intuitive. For any given channel error βf ,

as the block (or packet) length increases, it is optimum to go

for a high rate code. In other words, it is optimum for a flow

to use as much scheduling time as possible (i.e., use a large

block length kf , and hence, use a high rate code); however,

the resources are shared among multiple flows, and hence, we

ask the following question: “what is the optimum share of the

scheduling time” that each flow should have. Interestingly, in

our problem formulation, the optimum code rate parameter x∗
f

also solves this optimum scheduling times for each flows.

It is interesting to ask the question of how large the packet

sizes kf be for optimum resource allocation, and Lemma 4

provides a hint to the solution. From Lemma 4, we understand

the following: if there are two flows f1, f2, through a cell c
(seeing the same channel conditions, i.e., βf1 = βf2 ) with

wf1,c > wf2,c then it is optimum for flow f1 to use a large

packet size kf1 and flow f2 to use a small packet size kf2 .

The optimum schedule length will be to allocate less schedule

time to flow f1 and more schedule time to flow f2.

In the asymptotic case when wf,c and kf grows to ∞ (and kf
grows linearly with wf,c, we see from Eqn. (20) that the error

exponent also goes to ∞ (as 1− 2xf > 0), and hence, ef →
0. In this case, we see that the optimum rate can approach

arbitrarily close to 1 − 2β∗
f . Thus, for any kf and wf,c, the

optimum coding rate r∗f < 1− 2β∗
f

Previous studies on optimum resource allocation establish

that the proportional fair allocation is the same as equal

air–time allocation ([4]). But, in this problem, we see an

interesting phenomenon that is unusual of a proportional–fair

resource allocation.

Lemma 5. The optimum rate allocation x∗ (or equivalently

r∗) is not equivalent to equal air–time allocation which is
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3flow f

flow f
1

Fig. 2. Cells with equal traffic load

typically the solution of a proportional–fair (or ln utility)

allocation.

In particular, we see that the flows that see a better channel

get less air–times than the flows that see a worse channel.

This phenomenon is evident in the case of infinitely long code

words; with other parameters being same, the air–times of

flows in a cell c are proportional to 1
1−2βf,c

, and hence, flows

with small β get less air–times.

V. EXAMPLES

In this Section, we analyse some simple networks based on

the utility optimum solution that we obtained. In particular,

we analyse the so–called parking–lot topology often used to

explore fairness issues. It is to be noted that the parking–lot

topology is a simple case of a line network, and the results of

this section extends in a simple way to a linear network.

A. Example 1: Two cells with equal traffic load

We begin by considering the example shown in Figure 2

consisting of two cells a and b having three nodes 1, 2, and

3. Each cell has the same symbol error probability β and the

schedule length T . There are three flows f1, f2, and f3, with

two of the flows f1 and f3 having one–hop routes Cf1 = {b}
and Cf3 = {a}, and one flow f2 having a two–hop route

Cf2 = {a, b}. Each flow has the same information packet size

k and PHY transmit rate, i.e. wf,c = w.

The end–to–end packet error probability experienced by the

two–hop flow f2 is greater than that experienced by the one

hop flows f1 and f3, since each hop has the same fixed error

probability. Hence, we need to assign a lower coding rate rf2
to flow f2 than to flows f1 and f3 in order to obtain the

same error probability (after decoding) across flows. However,

when operating at the boundary of the network capacity region

(thereby maximising throughput), decreasing the coding rate

rf2 of the two–hop flow f2 requires that the coding rate of

both one–hop flows f1 and f3 be increased in order to remain

within the available network capacity. In this sense, allocating

coding rate to the two–hop flow f2 imposes a greater marginal

cost on the network (in terms of the sum–utility) than the one–

hop flows, and we expect that a fair allocation will therefore

assign higher coding rate to the two–hop flow f2. The solution

optimising this trade–off in a proportional fair manner can be

understood using the analysis in the previous section.

In this example, both the cells are equally loaded and, by

symmetry, the Lagrange multipliers pa = pb. Hence, λf1 =

a b

3flow f

flow f1

Fig. 3. Cells with unequal traffic load

λf2

2 = λf3 . Note that x∗
f2

< x∗
f1

and Λ∗
f2

< Λ∗
f1

. Hence, we

find from Eqn. (19) that

ef1
ef2

=
λf1

λf2

λf2 + Λ∗
f2

λf1 + Λ∗
f1

< 1.

B. Example 2: Two cells with unequal traffic load

We consider the same network as in the previous example,

but now with only the flows f1 and f2 (i.e., the flow f3 is

not present, see Figure 3) in the network. In this example, cell

b carries two flows while cell a carries only one flow. The

encoding rate constraints are given by

1

rf2
≤

wT

k
, (from cell a),

1

rf1
+

1

rf2
≤

wT

k
, (from cell b).

Since, both rf1 and rf2 are at most 1, it is clear that at

the optimum point, the rate constraint of cell a is not tight

while the constraint of cell b is tight. Thus, the shadow prices

(Lagrange multipliers) pa = 0 and pb > 0. That is, at the

first hop the cell is not operating at capacity, and so the

“price” for using this cell is zero. In this example, λf1 = λf2 ,

and hence, from Eqn. (19), we deduce that for low channel

errors, ef1 ≈ ef2 . This allocation make sense intuitively since

although flow f2 crosses two hops, it is only constrained at the

second hop and so it is natural to share the available capacity

of this second hop approximately equally between the flows.

VI. CONCLUSIONS

In this paper, we posed a utility fair problem that yields

the optimum coding across flows in a capacity constrained

network. We showed that the problem is highly non–convex.

However, we provided some simple conditions under which

the global network utility optimisation problem can be solved.

We obtained the optimum coding rate, and analysed some of its

properties. We also analysed some simple networks based on

the utility optimum framework we proposed. To the best of our

knowledge, this is the first work on cross–layer optimisation

that studies optimum coding across flows which are competing

for network resources.

1598



REFERENCES

[1] T. M. Cover and J. A. Thomas, Elements of information theory, 1st ed.
New York: Wiley–Interscience, 1991.

[2] M. Mushkin and I. Bar-David, “Capacity and coding for the Gilbert–Elliot
channels,” Information Theory, IEEE Transactions on, vol. 35, no. 6, pp.
1277–1290, 1989.

[3] K. Premkumar, X. Chen, and D. J. Leith, “Utility optimal coding for
packet transmission over wireless networks – Part II: Networks of packet
erasure channels,” in submitted, 2011.

[4] A. Checco and D. J. Leith, “Proportional fairness in 802.11 wireless lans,”
to appear in IEEE Comm. Letters, 2011.

[5] S. Shakkottai and R. Srikant, Network Optimization and Control. Now
Publishers Inc., Boston - Delft, 2008.

[6] F. J. MacWilliams and N. J. A. Sloane, The theory of error-correcting

codes. North-Holland Publishing Co., Amsderdam, 1977.
[7] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal, “Constructions

of mds-convolutional codes,” Information Theory, IEEE Transactions on,
vol. 47, no. 5, pp. 2045 –2049, jul 2001.

1599


