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Delay Optimal Event Detection on Ad Hoc Wireless Sensor Networks

PREMKUMAR KARUMBU, VENKATA K. PRASANTHI,
and ANURAG KUMAR, Indian Institute of Science, Bangalore

We consider a small extent sensor network for event detection, in which nodes periodically take samples
and then contend over a random access network to transmit their measurement packets to the fusion center.
We consider two procedures at the fusion center for processing the measurements. The Bayesian setting, is
assumed, that is, the fusion center has a prior distribution on the change time. In the first procedure, the
decision algorithm at the fusion center is network–oblivious and makes a decision only when a complete vector
of measurements taken at a sampling instant is available. In the second procedure, the decision algorithm at
the fusion center is network–aware and processes measurements as they arrive, but in a time-causal order.
In this case, the decision statistic depends on the network delays, whereas in the network–oblivious case,
the decision statistic does not. This yields a Bayesian change-detection problem with a trade-off between the
random network delay and the decision delay that is, a higher sampling rate reduces the decision delay but
increases the random access delay. Under periodic sampling, in the network–oblivious case, the structure of
the optimal stopping rule is the same as that without the network, and the optimal change detection delay
decouples into the network delay and the optimal decision delay without the network. In the network–aware
case, the optimal stopping problem is analyzed as a partially observable Markov decision process, in which
the states of the queues and delays in the network need to be maintained. A sufficient decision statistic is
the network state and the posterior probability of change having occurred, given the measurements received
and the state of the network. The optimal regimes are studied using simulation.
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Network monitoring; I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, and Search—Con-
trol theory
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1. INTRODUCTION

A wireless sensor network is formed by tiny, untethered devices (motes) that can sense,
compute, and communicate. Sensor networks have a wide range of applications such as
environment monitoring, detecting events, identifying locations of survivors in building
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Fusion
Centre

Fig. 1. An ad hoc wireless sensor network with a fusion center is shown. The small circles are the sen-
sor nodes (motes), and the lines between them indicate wireless links obtained after a self-organization
procedure.

and train disasters, and intrusion detection for defense and security applications. For
factory- and building-automation applications, there is increasing interest in replacing
wireline sensor networks with wireless sensor networks, due to the potential reduction
in costs of engineering, installation, operations, and maintenance [Honeywell Inc.; ISA].

Event detection is an important task in many sensor network applications. In gen-
eral, an event is associated with a change in the distribution of a related quantity that
can be sensed. For example, the event of a gas leakage at any joint in a pipe causes
a change in the distribution of pressure at the joint and, hence, can be detected with
the help of pressure sensors. In this article, we limit our discussion to the centralized
fusion model (see Figure 1), in which each mote in an event detection network senses
and sends some function of its observations (e.g., quantized samples) to the fusion cen-
ter at a particular rate. The fusion center, by appropriately processing the sequence of
values it receives, makes a decision regarding the state of nature, that is, it decides
whether or not a change has occurred.

Our problem is that of minimizing the mean detection delay (the delay between
the event occurring and the detection decision at the fusion center) with a bound on
the probability of false alarm. We consider a small extent network in which all the
sensors have the same coverage, that is, when the change in distribution occurs, it
is observed by all the sensors, and the statistics of the observations are the same at
all the sensors. N sensors synchronously sample their environment at a particular
rate. Synchronized operation across sensors is practically possible in networks such as
802.11 WLANs and Zigbee networks, since the access point and the PAN coordinator,
respectively, transmit beacons that provide all nodes with a time reference. Based on
the measurement samples, the nodes send certain values (e.g., quantized samples)
to the fusion center. Each value is carried by a packet, which is transmitted using a
contention-based multiple access mechanism. Thus, our small extent network problem
is a natural extension of the standard change-detection problem (see Veeravalli [2001]
and the references therein) to detection over a random access network. The problem of
quickest event detection in a large extent network (where the region of interest is much
larger than the sensing coverage of any sensor) is considered by us in Premkumar et al.
[2009]. Also, a small extent network can be thought of as a cluster in a large extent
network, and the decision maker can be thought of as a cluster head.

In this setting, due to the multiple access network delays between the sensor nodes
and the fusion center, several possibilities arise. In Figure 2, we show that although the
sensors take samples synchronously, due to random access delays, the various packets
sent by the sensors arrive at the fusion center asynchronously. As shown in the figure,
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Fig. 3. A conceptual block diagram of the wireless sensor network shown in Figure 1. The fusion center has
a sequencing buffer which queues out-of-sequence samples and delivers the samples to the decision maker
in time-order, as early as possible, batchwise or samplewise.

the packets generated due to the samples taken at time t2 arrive at the fusion center
with a delay of D(1)

2 , D(2)
2 , D(3)

2 , etc. It is even possible that a packet corresponding to
the samples taken at time t3 can arrive before one of the packets generated due to the
samples taken at time t2.

Figure 3 depicts a general queueing and decision-making architecture in the fusion
center. All samples are queued in per-node queues in a sequencer. The way the se-
quencer releases the packets gives rise to the following three cases, the first two of
which we study in this article.

(1) The sequencer queues the samples until all the samples of a batch (a batch is the
set of samples generated at a sampling instant) are accumulated; it then releases
the entire batch to the decision device. The batches arrive to the decision maker in
a time-sequence order. The decision maker processes the batches without knowl-
edge of the state of the network (i.e., reception times at the fusion center and the
numbers of packets in the various queues). We call this Network Oblivious Decision
Making (NODM). In factory and building automation scenarios, there is a major
impetus to replacing wireline networks between sensor nodes and controllers. In
such applications, the first step could be to retain the fusion algorithm in the
controller, while replacing the wireline network with a wireless ad hoc network.
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Indeed, we show that this approach is optimal for NODM, provided the sampling
rate is appropriately optimized.

(2) The sequencer releases samples only in time-sequence order but does not wait
for an entire batch to accumulate. The decision maker processes samples as they
arrive. We call this Network Aware Decision Making (NADM). In NADM, whenever
the decision maker receives a sample, it has to roll back its decision statistic to the
sampling instant, update the decision statistic with the received sample, and then
update the decision statistic to the current time slot. The decision maker makes a
Bayesian update on the decision statistic, even if it does not receive a sample in a
slot. Thus, NADM requires a modification in the decision-making algorithm in the
fusion center.

(3) The sequencer does not queue any samples. The fusion center acts on the val-
ues from the various sampling instants as they arrive, possibly out of order. The
formulation of such a problem would be an interesting topic for future research.

Our Contributions. We find that the existing literature on sequential change-
detection problems (see the following discussion on related literature) assumes that,
at a sampling instant, the samples from all the sensors reach the fusion center in-
stantaneously. As already explained, however, the delay in detection in our problem
is not only due to the detection procedure requiring a certain amount of samples in
order to make a decision (which we call decision delay), but also due to the random
packet delay in the multiple access network (which we call network delay). We work
with a formulation that accounts for both these delays, while limiting ourselves to the
particular fusion center behaviors explained in cases (1) and (2).

In Section 2, we discuss the basic change-detection problem and set up the model. In
Section 3, we formulate the change-detection problem over a random access network
in a way that naturally includes the network delay. We show that in the case of NODM,
the problem objective decouples into a part involving the network delay and a part
involving the optimal decision delay under the condition that the sampling instants
are periodic. Then, in Section 4, we consider the special case of a network with a
star topology, that is, all nodes are one hop away from the fusion center, and provide
a model for contention in the random access network. In Section 5, we formulate the
NADM problem, where we process the samples as they arrive at the fusion center but in
a time causal manner. The out-of-sequence packets are queued in a sequencing buffer
and are released to the decision maker as early as possible. We show in the NADM case
that the change-detection problem can be modeled as a Partially Observable Markov
Decision Process (POMDP). We show that sufficient statistics for the observations
include the network-state (which includes the queue lengths of the sequencing buffer,
network-delays) and the posterior probability of change having occurred given the
measurements received and the network states. As usual, the optimal policy can be
characterized via a Bellman equation, which can then be used to derive insights into the
structure of the policy. We show that the optimal policy is a threshold on the posterior
probability of change, and that the threshold, in general, depends on the network state.
Finally, in Section 6 we compare numerically the mean detection-delay performance of
NODM and a simple heuristic algorithm motivated by NADM processing. We show the
trade-off between the sampling rate r and the mean detection delay. Also, we show the
trade-off between the number of sensors and the mean detection delay.

Related Literature. The basic mathematical formulation in this article is an extension
of the classical problem of sequential change detection in a Bayesian framework. The
centralized version of this problem was solved by Shiryaev [1978]. The decentralized
version of the problem was introduced by Tenny and Sandell [1981]. In the decentral-
ized setting, Veeravalli [2001] provided optimal decision rules for the sensors and the
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Fig. 4. Time evolves over slots. The length of a slot is assumed to be unity. Thus, slot k represents the
interval [k, k + 1), and the beginning of slot k represents the time instant k. Samples are taken periodically
every 1/r slots, starting from t1 = 1/r.

fusion center, in the context of conditionally independent sensor observations and a
quasi-classical information structure. For a large network setting, Niu and Varshney
[2005] studied a simple hypothesis testing problem and proposed a counting rule based
on the number of alarms. They showed that, for a sufficiently large number of sensors,
the detection performance of the counting rule is close to that of the optimal rule. In
a recent article on anomaly detection in wireless sensor networks Rajasegarar et al.
[2008], have provided a survey of statistical- and machine-learning-based techniques
for detecting various types of anomalies such as sensor faults, security attacks, and
intrusions. In Aldosari and Moura [2004], the authors consider the problem of decen-
tralized binary hypothesis testing, where the sensors quantize the observations and
the fusion center makes a binary decision between the two hypotheses.

Remark. In the existing literature on the topic of optimal sequential event detection
in wireless sensor networks, to the best of our knowledge, there has been no prior
formulation that incorporates multiple access delay between the sensing nodes and the
fusion center. Interestingly, in this article we introduce what can be called a cross-layer
formulation involving sequential decision theory and random access network delays. In
particular, we encounter the fork-join queueing model (see, e.g., Baccelli and Makowski
[1990]) that arises in distributed computing literature.

2. THE BASIC CHANGE-DETECTION PROBLEM

In this section, we introduce the model for the basic change-detection problem. The
notation we follow is given here.

—Time is slotted, and the slots are indexed by k = 0, 1, 2, . . .. We assume that the
length of a slot is unity and that slot k refers to the interval [k, k + 1). Thus, the
beginning of slot k indicates the time instant k (see Figure 4).

—N sensors are synchronously sampling at the rate r samples/slot, that is, the sensors
make an observation every 1/r slots and send their observations to the fusion center.
For example, if r = 0.1, then a sample is taken by a sensor every 10th slot. We assume
that 1/r is an integer. The sampling instants are denoted t1, t2, . . . (see Figure 5).
Define t0 = 0; note that the first sample is taken at t1 = 1/r.

—The vector of network delays of batch b is denoted by

Db = [
D(1)

b , D(2)
b , . . . , D(N)

b

]
,
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Fig. 5. Change time and detection instants with and without network delay are shown. The coarse sampling
delay is given by tK − T , where tK is the first sampling instant after change, and the network delay is given
by UK̃ − tK̃.

where D(i)
b ∈ {1, 2, 3, . . .} is the network delay in slots of the ith component of the bth

batch (sampled at tb = b/r). Also, note that D(i)
b � 1, as it requires one time slot for

the transmission of a packet to the fusion center after a successful contention.
—The state of nature � ∈ {0, 1}. 0 represents the state “before change” and 1 represents

the state “after change”. It is assumed that the change time T (measured in slots) is
geometrically distributed, that is,

P (T = 0) = ρ,

and, for k � 1, P (T = k | T > 0) = p(1 − p)(k−1). (1)

The value of 0 for T accounts for the possibility that the change took place before the
observations were made.

—The vector of outputs from the sensor devices at the bth batch is denoted by

Xb = [
X(1)

b , X(2)
b , . . . , X(N)

b

]
,

where X(i)
b ∈ X is the bth output at the ith sensor. Given the state of nature, X(i)

b s
are assumed to be (conditionally) independent across sensors and independent and
identically distributed over sampling instants with probability distributions F0(x)
and F1(x) before and after the change, respectively. X1 corresponds to the first sample
taken. In this work, we do not consider the problem of optimal processing of sensor
measurements to yield the sensor outputs, for example, optimal quantizers (see
Veeravalli [2001]).

—Let Sb, b � 1, be the state of nature at the bth sampling instant and S0 be the state
at time 0. Then Sb ∈ {0, 1} with

P (S0 = 1) = ρ = 1 − P (S0 = 0) .

Sb evolves as follows. If Sb = 0 for b � 0, then

Sb+1 =
{

1 w.p. pr

0 w.p. (1 − pr)
,

where pr = 1 − (1 − p)1/r. Further, if Sb = 1, then Sb+1 = 1. Thus, if S0 = 0, then
there is a change from 0 to 1 at the Kth sampling instant, where K is geometrically
distributed. For b � 1,

P (K = b) = pr(1 − pr)b−1.
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Fig. 6. A sensor network model of Figure 3 with one-hop communication between the sensor nodes and the
fusion center. The random access network, along with the sequencer, is a fork–join queueing model.

Each value to be sent to the fusion center by a node is inserted into a packet,
which is queued for transmission. It is then transmitted to the fusion center by us-
ing a contention-based multiple-access protocol. A node can directly transmit its ob-
servation to the fusion center or route it through other nodes in the system. Each
packet takes a time slot to transmit. The MAC protocol and the queues evolve
over the same time slots. The fusion center makes a decision about the change,
depending on whether Network Oblivious (NODM) processing or Network Aware
(NADM) processing is employed at the fusion center. In the case of NODM pro-
cessing, the decision sequence (also called the action sequence) is Au, u � 0, with
Au ∈ {stop and declare change(1), take another sample(0)}, where u is a time instant
at which a complete batch of N samples corresponding to a sampling instant is re-
ceived by the fusion center. In the case of NADM processing, the decision sequence is
Ak, k � 0, with Ak ∈ {stop and declare change(1), take another sample(0)}, that is, a
decision about the change is taken at the beginning of every slot.

3. NETWORK OBLIVIOUS DECISION MAKING (NODM)

From Figure 2, we note that although all the components of a batch b are generated at
tb = b/r, they reach the fusion center at times tb + D(i)

b , i = 1, 2, . . . , N. In NODM pro-
cessing, the samples, which are successfully transmitted, are queued in a sequencing
buffer as they arrive (see Figure 6), and the sequencer releases a (complete) batch to
the decision maker as soon as all the components of a batch arrive. The decision maker
makes a decision about the change at the time instants when a (complete) batch arrives
at the fusion center. In Network Oblivious (NODM) processing, the decision maker is
oblivious to the network and processes the batch as though it had just been generated
(i.e., as if there were no network, hence the name Network Oblivious Decision Making).
We further define (see Figure 5) the following.

—Ub, (b � 1). The random instant at which the fusion center receives the complete
batch Xb.

—K̃ ∈ {0, 1, . . . }. The batch index at which the decision takes place if there is no
network delay. K̃ = 0 means that decision 1 (stop and declare change) is taken before
any batch is generated.

—T̃ = tK̃. The random time (a sampling instant) at which the fusion center stops and
declares change if there was no network delay.

—Ũ = UK̃. The random time slot at which the fusion center stops and declares change
in the presence of network delay.

—Db = Ub − tb. Sojourn time of the bth batch, that is, the time taken for all the
samples of the bth batch to reach the fusion center. Note that Db is given by
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Fig. 7. Illustration of an event of false alarm with T̃ < T , but Ũ > T .

max{D(i)
b : i = 1, 2, . . . , N}. Thus, the delay of batch K̃, at which the detector de-

clares a change, is UK̃ − tK̃ = Ũ − T̃ .

We define the following detection metrics.
Mean Detection Delay is defined as the expected number of slots between the change

point T and the stopping time instant Ũ in the presence of coarse sampling and
network delays, that is, Mean Detection Delay = E

[
(Ũ − T )1{T̃ �T }

]
.

Mean Decision Delay is defined as the expected number of slots between the change
point T and the stopping time instant T̃ in the (presence of coarse sampling delay and
in the) absence of network delay, that is, Mean Decision Delay = E

[
(T̃ − T )1{T̃ �T }

]
.

With the preceding model and assumptions, we pose the following NODM problem:
Minimize the mean detection delay with a bound on the probability of false alarm, such
that the decision epochs are the time instants when a complete batch of N components
corresponding to a sampling instant is received by the fusion center. In Section 5, we
pose the problem of making a decision at every slot based on the samples as they
arrive at the fusion center. Motivated by the approach in Veeravalli [2001], we use the
following formulation for a given sampling rate r.

min E
[
(Ũ − T )1{T̃ �T }

]
,

such that P(T̃ < T ) � α, (2)

where α is the constraint on the false alarm probability.
Remark 3.1. Note that if α � 1−ρ, then the decision making procedure can be stopped,

and an alarm can be raised even before the first observation. Thus, we assume that
α < 1 − ρ.

Remark 3.2. Note that here we consider P(T̃ < T ) as the probability of false alarm
and not P(Ũ < T ), that is, a case as shown in Figure 7 is considered a false alarm. This
can be understood as follows. When the decision unit detects a change at slot Ũ , the
measurements that triggered this inference would be carrying the time stamp T̃ , and
we infer that the change actually occurred at or before T̃ . Thus, if T̃ < T , it is an error.

We write the problem defined in Equation (2) as

min
�α

E
[
(Ũ − T )1{T̃ �T }

]
, (3)

where �α is the set of detection policies for which P(T̃ < T ) � α.

THEOREM 1. If the sampling is periodic at rate r and the batch sojourn time process
Db, b � 1 is stationary with mean d(r), then

min
�α

E
[
(Ũ − T )1{T̃ �T }

] = (d(r) + l(r))(1 − α) − ρ · l(r) + 1
r

min
�α

E
[
K̃ − K

]+
,

where l(r) is the delay due to (coarse) sampling.

Remark 3.3. For example, in Figure 5, the delay due to coarse sampling is t2 − T ,
K̃ − K = 3 − 2 = 1, and the network delay is U3 − t3. The stationarity assumption on
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Fusion
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Fig. 8. A sensor network with a star topology with the fusion center at the hub. The sensor nodes use a
random access MAC to send their packets to the fusion center.

Db, b � 1 is justifiable in a network in which measurements are continuously made,
but the detection process is started only at certain times, as needed.

PROOF. The following is a sketch of the proof (the details are in Appendix I).

min
�α

E
[
(Ũ − T )1{T̃ �T }

] = min
�α

{
E
[
(Ũ − T̃ )1{T̃ �T }

] + E
[
T̃ − T

]+}
= min

�α

{E[D](1 − P(T̃ < T )) + E[T̃ − T ]+},
where we have used the fact that under periodic sampling, the queueing system evo-
lution and the evolution of the statistical decision problem are independent, that is, K̃
is independent of {D1, D2, . . .}, and E[D] is the mean stationary queueing delay (of a
batch). By writing E[D] = d(r) and using the fact that the problem min�α

E[T̃ − T ]+ is
solved by a policy π∗

α ∈ �α with P(T̃ < T ) = α, the problem becomes

d(r)(1 − α) + min
�α

E[T̃ − T ]+ = (d(r) + l(r))(1 − α) − ρ · l(r) + 1
r

min
�α

E[K̃ − K]+,

where l(r) is the delay due to sampling. Notice that min�α
E[K̃ − K]+ is the basic change

detection problem at the sampling instants.

Remark 3.4. It is important to note that the independence between K̃ and {D1, D2, . . .}
arises from periodic sampling. This is conditional independence, given the rate of the
periodic sampling process. If, in general, one considers a model in which the sampling
is at random times (e.g., the sampling process randomly alternates between periodic
sampling at two different rates or if adaptive sampling is used), then we can view it as
a time-varying sampling rate, and the asserted independence will not hold.

We conclude that the problem defined in Equation (2) effectively decouples into
the sum of the optimal delay in the original optimal detection problem, that is,
1
r min�α

E[K̃− K]+, as in Veeravalli [2001]; a part that captures the network delay, that
is, d(r)(1 − α); and a part that captures the sampling delay, that is, l(r)(1 − α) − ρl(r).

4. NETWORK DELAY MODEL

From Theorem 1, it is clear that in NODM processing, the optimal decision device and
the queueing system are decoupled. Thus, one can employ an optimal sequential change
detection procedure (see Shiryaev [1978]) for any random access network (in between
the sensor nodes and the fusion center). Also, NODM is oblivious to the random access
network (in between the sensor nodes and the fusion center) and processes a received
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batch as though it had just been generated. In the case of NADM (which we describe in
Section 5), the decision maker processes samples taking network delays into account,
thus requiring knowledge of network dynamics. In this section, we provide a simple
model for the random access network that facilitates the analysis and optimization of
NADM.

N sensors form a star topology1 (see Figure 8) ad hoc wireless sensor network with
the fusion center as the hub. They synchronously sample their environment at the rate
of r samples periodically per slot. At sampling instant tb = b/r, sensor node i generates
a packet containing sample value X(i)

b (or some quantized version of it). This packet is
then queued first-in-first-out in the buffer behind the radio link. It is as if each sample
is a fork operation that puts a packet into each sensor queue (see Figure 6).

The sensor nodes contend for access to the radio channel and transmit packets when
they succeed. The service is modeled as follows. As long as there are packets in any of
the queues, successes are assumed to occur at the constant rate of σ (0 < σ < 1) per slot,
with intervals between the successes being independent and identically distributed and
geometrically distributed random variables with mean 1/σ . If, at the time a success
occurs, there are n nodes contending (i.e., n queues are nonempty), then the success is
ascribed to any one of these n nodes, with equal probability.

The N packets corresponding to a sample arrive at random times at the fusion center.
If the fusion center needs to accumulate all the N components of each sample, then it
must wait for that component of every sample that is last to depart its mote. This is a
join operation (see Figure 6).

It is easily recognized that our service model, in the case of NODM, is the discrete
time equivalent of generalized processor sharing (GPS—see, for example, Kumar et al.
[2004]), which can be called the FJQ-GPS (fork-join queue—(see Baccelli and Makowski
[1990])—with GPS service). In the case of NADM, the service model is just the GPS.

In IEEE 802.11 and IEEE 802.15.4 if appropriate parameters are used, then the
adaptive backoff mechanism can achieve a throughput that is roughly constant over
a wide range of n, that is, the number of contending nodes. This is well known for
CSMA/CA implementation in IEEE 802.11 wireless LANs; see, for example, Figure 9
[Kumar et al. 2008]. For each physical layer rate, the network service rate remains
fairly constant with increasing number of nodes. From Figure 10 (taken from Singh
et al. [2008]), it can be seen that with the default backoff parameters, the saturation
throughput of a star topology IEEE 802.15.4 network decreases with the number of
nodes N, but with the backoff multiplier = 3, the throughput remains almost constant
from N = 10 to N = 50 [Singh et al. 2008]; thus, in the latter case, our GPS model can
be applicable.

THEOREM 2. The stationary delay D is a proper random variable with a finite mean
if and only if Nr < σ .

PROOF. See Appendix II.

Thus, for the FJQ–GPS queueing system to be stable, sampling rate r is chosen such
that r < σ

N .

5. NETWORK AWARE DECISION MAKING (NADM)

In Section 3, we formulated the problem of NODM quickest change detection over
a random access network and showed that (when the decision instants are Uk, as
shown in Figure 5) the optimal decision maker is independent of the random access
network, under periodic sampling. Hence, the Shiryaev procedure, which is shown to

1Note that Theorem 1 is more general and does not assume a star topology.
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Fig. 9. The aggregate saturation throughput η of an IEEE 802.11 network plotted against the number of
nodes in the network, for various physical layer bit rates: 2.2 Mbps, 5.5 Mbps, and 11 Mbps . The two curves
in each plot correspond to an analysis and an NS–2 simulation.
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Fig. 10. The aggregate saturation throughput η of an IEEE 802.15.4 star topology network plotted against
the number of nodes in the network. Throughput obtained with default backoff parameters is shown on
the left and that obtained with backoff multiplier = 3 is shown on the right. The two curves in each plot
correspond to an analysis and an NS–2 simulation.

be delay-optimal in the classical change detection problem (see Shiryaev [1978]), can
be employed in the decision device independently of the random access network. It is
to be noted that the decision maker in the NODM case waits for a complete batch of N
samples to arrive to make a decision about the change. Thus, the mean detection delay
of the NODM has a network-delay component corresponding to a batch of N samples.
In this section, we provide an alternative mechanism of fusion at the decision device
called Network Aware Decision Making (NADM), in which the fusion algorithm does
not wait for an entire batch to arrive but processes the samples as soon as they arrive
in a time-causal manner.

We now describe the processing in NADM. Whenever a node (successfully) transmits
a sample across the random access network, it is delivered to the decision maker if
the decision maker has received all the samples from all the batches generated earlier.
Otherwise, the sample is an out-of-sequence sample and is queued in the sequencing
buffer. It follows that whenever the (successfully) transmitted sample is the last com-
ponent of the batch that the decision maker is looking for, then the head of line (HOL)
components (if any) in the queues of the sequencing buffer are also delivered to the
decision maker. This is because these HOL samples belong to the next batch that the
decision maker should process. The decision maker makes a decision about the change
at the beginning of every time slot, irrespective of whether it receives a sample or not.
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Fig. 11. At time k, the decision maker expects samples (or processes samples) from batch Bk. Also, at time
k, λk is the number of slots to go for the next sampling instant, and 
k is the number of slots back, at which
batch Bk is generated.

In NADM, whenever the decision maker receives a sample, it takes into account the
network-delay of the sample while computing the decision statistic. The network-delay
is a part of the state of the queueing system which is available to the decision maker.
Thus, unlike NODM, the state of the queueing system also plays a role in decision
making.

In Section 5.1, we define the state of the queueing system. In Section 5.2, we define
the dynamical system whose change of state (from 0 to 1) is the subject of interest to
us. We define the state of the dynamical system as a tuple that contains the queueing
state, the state of nature, and a delayed state of nature. The delayed state of nature
is included in the state of the system, so that the (delayed) sensor-observations that
the decision maker receives at time instant k+ 1 depend only on the state, the control,
and the noise of the system at time instant k—a property which is desirable to define
a sufficient statistic (see page 244 at Bertsekas [2000a]). We explain the evolution
of the state of the dynamical system in Section 5.3. In Section 5.4, we formulate the
NADM change detection problem and find a sufficient statistic for the observations in
Section 5.5. In Section 5.6, we provide the optimal decision rule for the NADM change
detection problem.

5.1. Notation and State of the Queueing System

Recall the notation introduced in Section 2. Time progresses in slots, indexed by k =
0, 1, 2 . . .; the beginning of slot k is the time instant k. Also, the time instant just after
the beginning of time slot is denoted by k+.2 Recall that the nodes take samples at
instants 1/r, 2/r, 3/r, . . .. We define the state of the queueing system here. Note that
the queueing system evolves over slots.

—λk ∈ {1, 2, . . . , 1/r} denotes the number of time slots to go for the next sampling
instant at the beginning of time slot k (see Figure 11). Thus,

λk := 1
r

−
(

k mod
1
r

)
. (4)

Thus, λ0 = 1
r , λ1 = 1

r − 1, . . ., and at the sampling instants tb, λtb = 1
r .

—Bk ∈ {1, 2, 3, . . .} denotes the index of the batch that is expected to be or is being
processed by the decision maker at the beginning of time slot k. Note B0 = B1 = · · · =
B1/r = 1. Also, note that batch Bk is generated at time instant Bk/r.

2Note that the notation t+ denotes a time embedded to the right of t and is different from the notation (x)+.
Recall that (x)+ := max{x, 0}.
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Fig. 12. Illustration of a scenario in which 
k = 0. If the last component from batch Bk−1 is received
at k, and if there is no sampling instant between tBk−1 and k, then 
k = 0. Also, note in this case that

k = 
k+1 = · · · = 
tBk

= 0. In this scenario, at time instants k, k + 1, . . . , tBk , all the queues at the sensor
nodes and the sequencer are empty, and at time instant tBk+, all sensor node queues have one packet which
is generated at tBk .

—
k ∈ {0, 1, 2, . . .} denotes the delay in the number of time slots between time instants
k and Bk/r (see Figure 11), such that


k := max
{

k − Bk

r
, 0

}
. (5)

Note that the batches of samples taken after Bk/r and up to (and including) k are
queued either in the sensor node queues or in the sequencing buffer in the fusion
center. If the fusion center receives a sample at time k, which is the last sample from
batch Bk−1, then Bk = Bk−1 + 1. If the sampling instant of the Bkth batch is later
than k (i.e., Bk/r > k), then 
k = 0 (up to time Bk/r, at which instant a new batch
is generated). This corresponds to the case in which all the samples generated up
to time slot k have already been processed by the decision maker (see Figure 12). In
particular, 
0 = 
1 = · · · = 
 1

r −1 = 0.

—L(i)
k ∈ {0, 1, 2, . . .} denotes the queue length of the ith sensor node just after the

beginning of time slot k (i.e., at time instant k+). The vector of queue lengths is
Lk = [L(1)

k , L(2)
k , . . . , L(N)

k ]. Let Nk ∈ {0, 1, 2, . . . , N} be the number of nonempty queues
at the sensor nodes, just after the beginning of time slot k, given by

Nk :=
N∑

i=1

1{L(i)
k >0},

that is, the number of sensor nodes contending for slot k is Nk. Hence, using the
network model we have provided in Section 4, the evolution of L(i)

k (see Figure 13) is
given by the following.

L(i)
0 = 0,

L(i)
k+1 =

⎧⎪⎪⎨⎪⎪⎩
L(i)

k + 1{λk+1=1/r} w.p. 1 if Nk = 0,

L(i)
k + 1{λk+1=1/r} w.p. (1 − σ ) if Nk > 0,

max{L(i)
k − 1, 0} + 1{λk+1=1/r} w.p. σ

Nk
if Nk > 0.

Note that when all the samples generated up to time slot k have already been pro-
cessed by the decision maker and k is not a sampling instant, that is, 
k = 0 and
λk �= 1/r, then Lk = 0 (as there are no outstanding samples in the system). For exam-
ple, L1 = L2 = · · · = L1/r−1 = 0. Also, note that just after sampling instant tb, L(i)

tb � 1.
—Mk ∈ {0, 1, 2, . . . , N} denotes the index of the node that successfully transmits in slot

k. Mk = 0 means that there is no successful transmission in slot k. Thus, from the
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Fig. 13. The evolution of L(i)
k from time slot k to time slot k + 1. If, during time slot k, node i (successfully)

transmits a packet to the fusion center (i.e., Mk = i), then that packet is flushed out of its queue at the end
of time slot k. Also, a new sample is generated (every 1/r slots) exactly at the beginning of a time slot. Thus,
L(i)

k+1, the queue length of sensor node i (just after the beginning of the time slot k + 1 (i.e., at (k + 1)+)) is

given by L(i)
k+1 = L(i)

k − 1{Mk=i} + 1{λk+1=1/r}.

slotsk+1k

A new sample is received by the fusion center here if

 w.p. if

W
(i)
k W

(i)
k+1

Mk = j L
(j)
k > 0

Mk = j

σ
Nk

Fig. 14. The evolution of W (i)
k from time slot k to time slot k + 1. If a sample from node i is transmitted

(successfully) during time slot k (i.e., Mk = i), then it is received by the fusion center at the end of time slot
k (i.e., at (k + 1)−). If this sample is from batch Bk, it is passed on to the decision maker. Otherwise, it is
queued in the sequencing buffer, in which case W (i)

k+1 = W (i)
k + 1. On the other hand, if a sample from some

other node j is transmitted (successfully) during time slot k (i.e., Mk = j �= i), and if this sample is the last
component to be received from batch Bk by the fusion center, then the HOL packet of the ith sequencing
queue (if any) is also delivered to the decision maker. Thus, in this case, W (i)

k+1 = max{W (i)
k − 1, 0}. Note that

W (i)
k+1 refers to the queue length corresponding to node i at the sequencer at the beginning of time slot k+ 1.

network model provided in Section 4, we note that

Mk =
⎧⎨⎩

0 w.p. 1 if Nk = 0,
0 w.p. (1 − σ ) if Nk > 0,

j w.p. σ
Nk

if L( j)
k > 0, j = 1, 2, . . . , N.

—W (i)
k ∈ {0, 1, 2, . . .} denotes the queue length of the ith sequencing buffer at time

k. The vector of queue lengths is given by Wk = [
W (1)

k , W (2)
k , . . . , W (N)

k

]
. Note that

Wk = 0 if 
k = 0, that is, the sequencing buffer is empty if there are no outstanding
samples in the system. In particular, W0 = W1 = · · · = W 1

r
= 0. The evolution of

W (i)
k is explained in Figure 14. If a sample from node i of a batch later than Bk is

successfully transmitted during slot k, then W (i)
k+1 = W (i)

k + 1. If a sample from node
j of batch Bk is successfully transmitted, and if it is the last sample to be received
from batch Bk, then the queue lengths of the sequencing buffer are decremented by
1, that is, W (i)

k+1 = max{W (i)
k − 1, 0}.

—R(i)
k ∈ {0, 1} denotes whether the sample X(i)

Bk
has been received and processed by

the decision maker, at time k. R(i)
k = 0 means that the sample X(i)

Bk
has not yet

been received by the decision maker, and R(i)
k = 1 means that the sample X(i)

Bk
has
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been received and processed by the decision maker. The vector of R(i)
k s is given

by Rk = [R(1)
k , R(2)

k , . . . , R(N)
k ]. Note that if R(i)

k = 0, then W (i)
k = 0, that is, the ith

sequencing buffer is empty if the sample expected by the decision maker has not
yet been transmitted. Also note that when 
k = 0, Rk = 0, as the samples from the
current batch Bk have yet to be generated or have just been generated.

We now relate the queue lengths L(i)
k and W (i)

k . Note that at the beginning of time
slot k,

⌊ k
1/r

⌋
batches have been generated so far, of which Bk − 1 batches are completely

received by the decision maker. In batch Bk, the ith sample is received by the decision
maker, if R(i)

k = 1. Hence, at time k, Bk − 1 + R(i)
k samples generated by node i have

been processed by the decision maker and the remaining samples are in the sensor and
sequencing queues. Thus, we have

L(i)
k + W (i)

k =
⌊

k
1/r

⌋
− (Bk − 1) − R(i)

k

=
⌊

k − Bk/r + 1/r
1/r

⌋
− R(i)

k

=

⎧⎪⎪⎨⎪⎪⎩
⌊


k
1/r

⌋
+ 1 − R(i)

k if k > Bk/r,

1 − R(i)
k if k = Bk/r,

−R(i)
k if k < Bk/r.

(6)

Recalling the definition of 
k, we write Equation (6) as

L(i)
k + W (i)

k =

⎧⎪⎨⎪⎩
⌊


k
1/r

⌋
+ 1 − R(i)

k if 
k > 0,

1 if 
k = 0, λk = 1/r,
0 if 
k = 0, λk �= 1/r.

(7)

Note that in Equation (7) 
k = 0, λk = 1/r (or equivalently k = Bk/r) corresponds to the
case when the samples of batch Bk have just been taken and all the samples from all
previous batches have been processed. Thus, in this case, L(i)

k = 1 (as W (i)
k = 0). In the

case of 
k = 0, λk �= 1/r (or equivalently k < Bk/r), all the samples from all previous
batches have been processed, and a new sample from batch Bk is not yet taken. Thus,
in this case, L(i)

k = 0 (and W (i)
k = 0). Hence, given Qk = [

λk, Bk,
k, Wk, Rk
]
, the queue

lengths L(i)
k s can be computed as

L(i)
k = φL(i) (Qk) :=

⎧⎪⎨⎪⎩
⌊


k
1/r

⌋
+ 1 − R(i)

k − W (i)
k if 
k > 0,

1 if 
k = 0, λk = 1/r,
0 if 
k = 0, λk �= 1/r.

. (8)

Also, Nk = φN(Qk) :=
N∑

i=1

1{φL(i) (Qk)>0}. (9)

Thus, the state of the queueing system at time k can be expressed as Qk =
[λk, Bk,
k, Wk, Rk]. Note that the decision maker can observe the state Qk perfectly.
The evolution of the queueing system is explained in Section 5.2.

5.2. Evolution of the Queueing System

The evolution of the queueing system from time k to time k + 1 depends only on Mk,
that is the success/no-success of contention on the random access channel. Note that
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the evolution of λk is deterministic and that of 
k depends on Bk. Hence, to describe
the evolution of Qk, it is enough to explain the evolution of Bk, Wk, and Rk for various
cases of Mk. Let Yk+1 ∈ {∅} ∪ (∪N

n=1X n) denote the vector of samples received (if any) by
the decision maker at the beginning of slot k+ 1 (i.e., the decision maker can receive a
vector of n samples, where n ranges from 0 to N).

At the beginning of time slot k + 1, the following possibilities arise.

—No successful transmission. This corresponds to either the case i) in which all the
queues are empty at the sensor nodes (Nk = 0) case or (ii) in which some queues
are non–empty at the sensor nodes (Nk > 0), there are no queue attempts, or there
is more than one attempt (resulting in a collision). In either case, Mk = 0 and the
decision maker does not receive any sample, that is, Yk+1 = ∅. In this case, it is clear
that Bk+1 = Bk, Wk+1 = Wk, and Rk+1 = Rk.

—Successful transmission of node j’s sample from a later batch. This corresponds to the
case when the decision maker has already received the jth component of the current
batch Bk (i.e., R( j)

k = 1) and has not received some sample, say i �= j, from batch Bk

(i.e., R(i)
k = 0, for some i). The received sample (is an out-of-sequence sample and) is

queued in the sequencing buffer (W ( j)
k+1 = W ( j)

k + 1). Thus, in this case, Mk = j, and
the decision maker does not receive any sample, that is, Yk+1 = ∅. In this case, it is
clear that Bk+1 = Bk, Wk+1 = Wk + e j , and Rk+1 = Rk.

—Successful transmission of node j’s current sample, which is not the last component
of batch Bk. This corresponds to the case when the decision maker has not received
the jth component of batch Bk before time slot k (R( j)

k = 0), and it has received all the
samples that are generated earlier than that of the successful sample. Also, the fusion
center is yet to receive some other component of batch Bk (i.e.,

∑N
i=1 R(i)

k < N − 1).
Thus, in this case, Mk = j, and the decision maker receives the sample Yk+1 = X( j)

Bk
.

In this case, it is clear that Bk+1 = Bk, Wk+1 = Wk, and Rk+1 = Rk + e j .
—Successful transmission of node j’s current sample, which is the last component

of the batch Bk. This corresponds to the case when the decision maker has not
received the jth component of batch Bk before time slot k (R( j)

k = 0), and it has
received all the samples that are generated earlier than that of the successful sample.
Also, this sample is the last component of batch Bk that is received by the fusion
center (i.e.,

∑N
i=1 R(i)

k = N − 1). In this case (along with the received sample), the
queues of the sequencing buffer deliver the head of line (HOL) components (which
correspond to the batch index Bk+1), if any, to the decision maker, and the queues are
decremented by one (W (i)

k+1 = max{W (i)
k − 1, 0}). Thus, Mk = j and the decision maker

receive the vector of samples Yk+1 = [X( j)
Bk

, X(i′
1)

Bk+1, X(i′
2)

Bk+1, . . . , X
(i′

n−1)
Bk+1], where W (i)

k > 0
for i ∈ {i′

1, i′
2, . . . i′

n−1}, and W (i)
k = 0 for i /∈ {i′

1, i′
2, . . . i′

n−1}. In this case, Bk+1 = Bk + 1,
Wk+1 = Wk − ei′

1
− ei′

2
− · · · − ei′

n−1
, and Rk+1 = ei′

1
+ ei′

2
+ · · · + ei′

n−1
.

Thus, the state of the queueing system at time k + 1 can be described by

Qk+1 = φQ(Qk, Mk)

:= [
φλ(Qk, Mk), φB(Qk, Mk), φ
(Qk, Mk), φW(Qk, Mk), φR(Qk, Mk)

]
.

In the next section, we provide a model of the dynamical system whose state has the
state of nature �k as one of its constituents. The quickest detection of change of �k
from 0 to 1 (at a random time T ) is the focus of this article.
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5.3. System State Evolution Model

Let �k ∈ {0, 1}, k � 0 be the state of nature at the beginning of time slot k. Recall that
T is the change point, that is, for k < T , �k = 0 and for k � T , �k = 1, and that the
distribution of T is given in Equation (1). The state �k is observed only through the
sensor measurements which are delayed. We will formulate the optimal NADM change
detection problem as a partially observable Markov decision process (POMDP) with
the delayed observations. The approach and the terminology used here is in accordance
with the stochastic control framework in Bertsekas [2000a]. At time k, a sample (if any)
that the decision maker receives is generated at time Bk/r < k (i.e., samples arrive at
the decision maker with a network-delay of 
k = k − Bk

r slots). To make an inference
about �k from the sensor measurements, we must consider the vector of states of nature
that corresponds to the time instants k − 
k, k − 
k + 1, . . . , k. We define the vector of
states at time k as �k := [�k−
k,�k−
k+1, . . . , �k]. Note that the length of the vector
depends on the network-delay 
k. When 
k > 0, �k = [� Bk

r
,� Bk

r +1, . . . , �k], and when

k = 0, �k is just [�k].

Consider the discrete-time system, which at the beginning of time slot k is described
by the state

�k = [Qk,�k],

where we recall that

Qk = [λk, Bk,
k, Wk, Rk],
�k = [�k−
k,�k−
k+1, . . . , �k].

Note that �0 = [[ 1
r , 1, 0, 0],�0]. At each time slot k, we have the following set of controls

{0, 1}, where 0 represents “take another sample”, and 1 represents “stop and declare
change.” Thus, at time slot k, when the control chosen is 1, the state �k+1 is given by a
terminal absorbing state t; when the control chosen is 0, the state evolution is given by
�k+1 = [Qk+1,�k+1], where

Qk+1 = φQ(Qk, Mk),

�k+1 =

⎧⎪⎪⎨⎪⎪⎩
[
�k + 1{T =k+1}

]
, if 
k+1 = 0[

�k−
k,�k−
k+1, . . . , �k,�k + 1{T =k+1}
]
, if 
k+1 = 
k + 1[

�k−
k+ 1
r
,�k−
k+ 1

r +1, . . . , �k,�k + 1{T =k+1}
]
, if 
k+1 = 
k + 1 − 1

r .

=: φ�

(
�k, Qk, Mk, 1{T =k+1}

)
, (10)

where it is easy to observe that �k + 1{T =k+1} = �k+1. When 
k+1 = 
k + 1, batch Bk
is still in service, and hence, in addition to the current state �k+1 = �k + 1{T =k+1},
we need to keep the states �k−
k,�k−
k+1, . . . , �k. Also, when 
k+1 = 
k + 1 − 1

r ,
the batch index is incremented, and hence, the vector of states that determines the
distribution of the observations sampled at or after Bk+1/r and before k+ 1 is given by
[�k−
k+ 1

r
,�k−
k+ 1

r +1, . . . , �k,�k + 1{T =k+1}].
Define Ok := 1{T =k+1}, and define Nk := [Mk, Ok] as the state-noise during time slot

k. The distribution of state-noise Nk, given the state of the discrete-time system �k, is
given by P(Mk = m, Ok = o|�k = [q, θ ]) and is the product of the distribution functions
P(Mk = m|�k = [q, θ ]) and P(Ok = o|�k = [q, θ ]). These distribution functions are
provided in Appendix III.

The problem is to detect the change in the state �k as early as possible by sequentially
observing the samples at the decision maker.
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5.4. The NADM Change-Detection Problem

We now formulate the NADM change detection problem in which the observations from
the sensor nodes are sent over a random access network to the fusion center, and the
fusion center processes then the samples in the NADM mode.

In Section 5.3, we defined the state �k = [Qk,�k] on which we formulate the NADM
change detection problem as a POMDP. Recall that at the beginning of slot k, the
decision maker receives a vector of sensor measurements Yk and observes the state Qk
of the queueing system. Thus, at time k, Zk = [Qk, Yk] is the observation of the decision
maker about the state of the dynamical system �k.

Let Ak ∈ {0, 1} be the control (or action) chosen by the decision maker after having
observed Zk at k. Recall that 0 represents “take another sample” and 1 represents the
action “stop and declare change.” Let Ik = [Z[0:k], A[0:k−1]] be the information vector3

that is available to the decision maker at the beginning of time slot k. Let τ be a
stopping time with respect to the sequence of random variables I1, I2, . . .. Note that
Ak = 0 for k < τ and Ak = 1 for k � τ . We are interested in obtaining a stopping time
τ (with respect to the sequence I1, I2, . . .) that minimizes the mean detection delay
subject to a constraint on the probability of false alarm, that is,

min E
[
(τ − T )+

]
, (11)

such that P (τ < T ) � α.

Note that in the case of NADM, at any time k, a decision about the change is made based
on information Ik (which includes the batch index we are processing and the delays).
Thus, in the case of NADM, false alarm is defined as the event {τ < T } and, hence,
τ � T is not classified as a false alarm, even if it is due to pre-change measurements
only. However, in the case of NODM, this is classified as a false alarm, as the decision
about the change is based on the batches received until time k.

Let c be the cost per unit delay in detection. We are interested in obtaining a stopping
time τ ∗ that minimizes the expected cost (Bayesian risk), given by

C(c, τ ∗) = min
τ

E
[
1{�τ =0} + c · (τ − T )+

]
= min

τ
E

[
1{�τ =0} + c ·

τ−1∑
k=0

1{�k=1}

]

= min
τ

E

[
gτ (�τ , Aτ ) +

τ−1∑
k=0

gk(�k, Ak)

]

= min
τ

E

[ ∞∑
k=0

gk(�k, Ak)

]
, (12)

where �k = [Qk,�k] as defined earlier. Let θ = [θδ, θδ−1, . . . , θ1, θ0]. We define for k � τ
that

gk([q, θ ], a) =

⎧⎪⎨⎪⎩
0, if θ0 = 0, a = 0
1, if θ0 = 0, a = 1
c, if θ0 = 1, a = 0
0, if θ0 = 1, a = 1,

(13)

and for k > τ , gk(·, ·) := 0. Recall that Ak = 0 for k < τ and Ak = 1 for k � τ . Note
that Ak, the control at time slot k, depends only on Ik. Thus, every stopping time τ

3The notation Z[k1:k2] := Zk1 , Zk1+1, . . . , Zk2 .
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corresponds to a policy μ = (μ0, μ1, . . .), such that Ak = μk(Ik), with Ak = 0 for k < τ
and Ak = 1 for k � τ . Thus, Equation (12) can be written as

C(c, τ ∗) = min
μ

E

[ ∞∑
k=0

gk(�k, Ak)

]

= min
μ

∞∑
k=0

E
[
gk(�k, Ak)

]
(by monotone convergence theorem)

= min
μ

∞∑
k=0

E
[
gk(�k, μk(Ik))

]
. (14)

Since �k is observed only through Ik, we look at a sufficient statistic for Ik in the next
section.

5.5. Sufficient Statistic

In Section 5.2, we have illustrated the evolution of the queueing system Qk and have
shown, in different scenarios, the vector Yk received by the decision maker. Recall from
Section 5.2 that

Yk+1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∅, if Mk = 0,

∅, if Mk = j > 0, R( j)
k = 1,

Yk+1,0, if Mk = j > 0, R( j)
k = 0,

N∑
i=1

R(i)
k < N − 1[

Yk+1,0, Yk+1,1, . . . , Yk+1,n
]
, if Mk = j > 0, R( j)

k = 0,
N∑

i=1
R(i)

k = N − 1,

N∑
i=1

1{W (i)
k >0} = n.

Note that Yk+1,0 corresponds to X(Mk)
Bk

. The last part of the preceding equation cor-
responds to the last pending sample of batch Bk arriving at the decision maker at
time k + 1, with some samples from batch Bk + 1 (= Bk+1) also being released by
the sequencer. In this case, the state of nature at the sampling instant of batch
Bk+1 = Bk + 1 is �k−
k+1/r. Note that �k−
k+1/r is a component of the vector �k, as
k−
k + 1/r = (Bk + 1)/r < k. Thus, the distribution of Yk+1,0, Yk+1,1, . . . , Yk+1,n is given
by

fYk+1,0 (·) =
{

f0(·), if �k−
k = 0
f1(·), if �k−
k = 1 and

fYk+1,i (·) =
{

f0(·), if �k−
k+1/r = 0
f1(·), if �k−
k+1/r = 1.

, i = 1, 2, . . . , n.

Thus, at time k+1, the current observation Yk+1 depends only on the previous state �k,
previous action Ak, and the previous noise of the system Nk. Thus, a sufficient statistic
is [P(�k = [q, θ ]|Ik)][q,θ ]∈S (see page 244 at Bertsekas [2000a]), where S is the set of all

ACM Transactions on Sensor Networks, Vol. 8, No. 2, Article 12, Publication date: March 2012.



12:20 P. Karumbu et al.

states of the dynamical system defined in Sec. 5.3. Let q = [λ, b, δ, w, r]. Note that

P
(
�k = [q, θ ]

⏐⏐Ik
)

= P
(
�k = [q, θ ]

⏐⏐Ik−1, Qk, Yk
)

= 1{Qk=q} · P
(
�k = θ

⏐⏐Ik−1, Qk = q, Yk
)

= 1{Qk=q}
· P

(
[�k−δ,�k−δ+1, . . . , �k−1,�k] = [θδ, θδ−1, . . . , θ1, θ0]

⏐⏐Ik−1, Qk = q, Yk
)

= 1{Qk=q} · P
(
�k−δ = θδ

⏐⏐Ik−1, Qk = q, Yk
)

·
δ∏

j=1

P
(
�k−δ+ j = θδ− j

⏐⏐�k−δ+ j ′ = θδ− j ′ , j ′ = 0, 1, . . . , j − 1, Ik−1, Qk = q, Yk
)
(15)

Observe that

P
(
�k−δ+ j = θδ− j

⏐⏐�[k−δ:k−δ+ j−2],�k−δ+ j−1 = 0, Ik−1, Qk = q, Yk
)

=
{

1 − p, if θδ− j = 0
p, if θδ− j = 1,

and

P
(
�k−δ+ j = θδ− j

⏐⏐�[k−δ:k−δ+ j−2],�k−δ+ j−1 = 1, Ik−1, Qk = q, Yk
)

=
{

0, if θδ− j = 0
1, if θδ− j = 1.

This is because given �k−δ, the events {�k−δ+ j = θδ− j},
{
Ik−1, Qk = q, Yk

}
are condition-

ally independent. Thus, Equation (15) can be written as

P (�k = [q, θ ])
⏐⏐Ik

=

⎧⎪⎪⎨⎪⎪⎩
1{Qk=q} · P

(
�k−δ = 1

⏐⏐Ik−1, Qk = q, Yk
)
, if θ = 1

1{Qk=q} · P
(
�k−δ = 0

⏐⏐Ik−1, Qk = q, Yk
) · (1 − p)δ− j−1 p, if θ = [0, . . . , 0, 1︸︷︷︸

θ j

, . . . , 1]

1{Qk=q} · P
(
�k−δ = 0

⏐⏐Ik−1, Qk = q, Yk
) · (1 − p)δ, if θ = 0.

,

(16)

Define �̃k := �k−
k, and define

�k := P
(
�̃k = 1

⏐⏐Ik−1, Qk = [λ, b, δ, w, r], Yk
)

= P
(
�k−δ = 1

⏐⏐Ik−1, Qk = [λ, b, δ, w, r], Yk
)

�k := P
(
�k = 1

⏐⏐Ik−1, Qk = [λ, b, δ, w, r], Yk
)

= P
(
T � k

⏐⏐Ik−1, Qk = [λ, b, δ, w, r], Yk
)
.

(17)

Thus, Equation (16) can be written as

P
(
�k = [

[λ, b, δ, w, r], θ
] ⏐⏐Ik

)
=

⎧⎪⎪⎨⎪⎪⎩
1{Qk=[λ,b,δ,w,r]} · �k, if θ = 1
1{Qk=[λ,b,δ,w,r]} · (1 − �k) · (1 − p)δ− j−1 p, if θ = [0, . . . , 0, 1︸︷︷︸

θ j

, . . . , 1]

1{Qk=[λ,b,δ,w,r]} · (1 − �k) · (1 − p)δ, if θ = 0.

(18)
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We now find a relation between �k and �k in the following Lemma.

LEMMA 5.1. The relation between the conditional probabilities �k and �k is given by

�k = �k + (1 − �k)
(
1 − (1 − p)δ

)
. (19)

PROOF. See Appendix IV.

From Equation (18) and Lemma 5.1, it is clear that a sufficient statistic for Ik is
νk = [Qk,�k]. Also, we show in Appendix V that νk can be computed recursively, that
is, when Ak = 0, νk+1 = [Qk+1,�k+1] = [Qk+1, φ�(νk, Zk+1)], and when Ak = 1, νk+1 = t,
a terminal state. Thus, νk can be thought of as entering into a terminating (absorbing)
state t at τ (i.e., νk = [Qk,�k], for k < τ and νk = t for k � τ ). Since νk is sufficient, for
every policy μk there corresponds a policy μ̃k such that μk(Ik) = μ̃k(νk) (see page 244 at
Bertsekas [2000a]).

5.6. Optimal Stopping Time τ

Let Q be the set of all possible states of the queueing system Qk. Thus, the state space of
the sufficient statistic is N = (Q × [0, 1])∪{t}. Recall that the action space is A = {0, 1}.
Define the one-stage cost function g̃ : N × A → R+ as follows. Let ν ∈ N be a state of
the system, and let a ∈ A be a control. Then,

g̃(ν, a) =
{ 0 if ν = t

c · π if ν = [q, π ], a = 0
1 − π if ν = [q, π ], a = 1.

Note from Equation (13) for k � τ , that

E
[
gk(�k, Ak)

] = E
[
gk(�k, μk(Ik))

]
= E

[
E
[
gk(�k, μk(Ik))

⏐⏐Ik
]]

= E
[
g̃(νk, μ̃k(νk))

]
,

and for k > τ , that

E
[
gk(�k, Ak)

] = 0

= E
[
g̃(t, ·)] .

Since {νk} is a controlled Markov process, and the one-stage cost function g̃(·, ·), the
transition probability kernel for Ak = 1 and for Ak = 0 (i.e., P(Zk+1|νk)) does not depend
on time k, and since the optimization problem defined in Equation (14) is over infinite
horizon, it is sufficient to look for an optimal policy in the space of stationary Markov
policies (see page 83 at Bertsekas [2000b]). Thus, the optimization problem defined in
Equation (14) can be written as

C(c, τ ∗) = min
μ̃

∞∑
k=0

E
[
g̃
(
νk, μ̃k(νk)

)]
=

∞∑
k=0

E
[
g̃
(
νk, μ̃

∗(νk)
)]

. (20)

Thus, the optimal total cost is given by

J∗([q0, π0]) =
∞∑

k=0

E[̃g(νk, μ̃
∗(νk))|ν0 = [q0, π0]]. (21)
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The solution to the preceding problem is obtained by following Bellman’s equation,
which is given by

J∗([q, π ]) := min{1 − π, cπ + E[J∗(Qk+1, φ�(νk, Zk+1))|νk = [q, π ]]}, (22)

where the function φ�(νk, Zk+1) is provided in Appendix V.
Remark 5.2. The optimal stationary Markov policy (i.e., the optimum stopping rule τ )

in general depends on Q. Hence, the decision delay and the queueing delay are coupled,
unlike in the NODM case.
We characterize the optimal policy in the following theorem.

THEOREM 3. The optimal stopping rule τ ∗ is a network-state dependent threshold rule
on the a posteriori probability �k, that is, there exist thresholds γ (q), such that

τ = inf{k � 0 : �k � γ (Qk)}. (23)

PROOF. See Appendix VI.

In general, the thresholds γ (Qk)s (i.e., optimum policy) can be numerically obtained
by solving Equation (22) using value iteration method (see pp. 88–90 at Bertsekas
[2000b]). However, computing the optimal policy for the NADM procedure is hard, as
the state space is huge even for moderate values of N. Hence, we resort to a suboptimal
policy based on the following threshold rule motivated by the structure of the optimal
policy.

τ = inf{k � 0 : �k � γ }, (24)

where γ is chosen such that P (τ < T ) = α is met.
Thus, we have formulated a sequential change detection problem in which the sensor

observations are sent to the decision maker over a random access network, and the
fusion center processes the samples in the NADM mode. The information for decision
making now needs to include the network state Qk (in addition to the samples received
by the decision maker); we have shown that [Qk,�k] is sufficient for the information
history Ik. Also, we have provided the structure for the optimal policy. Since obtaining
the optimal policy is computationally hard, we gave a simple threshold-based policy,
which is motivated by the structure of the optimal policy.

6. NUMERICAL RESULTS

Minimizing the mean detection delay not only requires an optimal decision rule at
the fusion center but also involves choosing the optimal values of the sampling rate r
and the number of sensors N. To explore this, we obtain the minimum decision delay
for each value of the sampling rate r numerically and obtain the network delay via
simulation.

6.1. Optimal Sampling Rate

Consider a sensor network with N nodes. For a given probability of false alarm, the
decision delay (detection delay without the network-delay component) decreases with
increase in sampling rate. This is due to the increase in the number of samples that
the fusion center receives within a given time. But, as the sampling rate increases,
the network delay increases due to the increased packet communication load in the
network. Therefore, it is natural to expect the existence of a sampling rate r∗ with
r∗ < σ/N, (the sampling rate should be less than σ/N for the queues to be stable;
see Theorem 2) that optimizes the tradeoff between these two components of detection
delay. Such an r∗, in the case of NODM, can be obtained by minimizing the following
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expression over r (recall Theorem 1).

(d(r) + l(r))(1 − α) − ρ · l(r) + 1
r

min
�α

E
[
K̃ − K

]+
.

Note that in the preceding expression, the delay term min�α
E[K̃ − K]+ also depends

on the sampling rate r, via the probability of change pr = 1 − (1 − p)(1/r). The delay
due to coarse sampling l(r)(1 − α) − ρ · l(r) can be found analytically (see Appendix I).
We can approximate the delay min�α

E[K̃ − K]+ by the asymptotic (as α → 0) delay as
| ln(α)|

NI( f1, f0)+| ln(1−pr )| , where I( f1, f0) is the Kullback-Leibler (KL) divergence between the
pdfs f1 and f0 [Tartakovsky and Veeravalli 2005]. But obtaining the network-delay
(i.e., d(r)(1 − α)) analytically is hard, and hence, an analytical characterisation of r∗
appears intractable. Therefore, we have resorted to numerical evaluation.

The distribution of sensor observations are taken to be N (0, 1) and N (1, 1),4 before
and after the change, respectively, for all the ten nodes. We choose the probability of
occurrence of change in a slot to be p = 0.0005, that is, the mean time until change
is 2,000 slots. min�α

E
[
K̃ − K

]+ and d(r) are obtained from simulations for α = 0.01
and σ = 0.3636, and the expression for mean detection delay is plotted against r in
Figure 15. Note that both NODM and NADM are threshold-based, and we obtain the
corresponding thresholds for a target PFA = 0.01 by simulation. These thresholds are
then used to obtain the mean detection delay by simulation. In Figure 15, we also
plot the approximate mean detection delay which is obtained through the expression
for l(r) and the approximation, min�α

E
[
K̃ − K

]+ ≈ | ln(α)|
NI( f1, f0)+| ln(1−pr )| . We study this

approximation as it provides an (approximate) explicit expression for the mean decision
delay. The delay in the FJQ–GPS does not have a closed-form expression. Hence, we
still need simulation for the delay, due to queueing network. It is to be noted that
at k = 0, the size of all the queues is set to 0. The mean detection delay due to the
procedure defined in Equation (24) is also plotted in Figure 15.

As would have been expected, we see from Figure 15 that the NADM procedure
has a better mean detection delay performance than the NODM procedure. Note that
σ/N = 0.03636, and hence for the queues to be stable (see Theorem 2), the sampling
rate has to be less than σ/N = 0.03636 (1/28 < 0.03636 < 1/27). As the sampling rate
r increases to 1/28 (the maximum allowed sampling rate), the queueing delay increases
rapidly. This is evident from Figure 15. Also, we see from Figure 15 that operating at
a sampling rate around 1/34(≈ 0.0294) samples/slot would be optimal. The optimal
sampling rate, is found to be approximately the same for NODM and NADM. At the
optimal sampling rate, the mean detection delay of NODM is 90 slots, and that of
NADM is 73 slots.

6.2. Optimal Number of Sensor Nodes (Fixed Observation Rate)

Now let us consider fixing N × r. This is the number of observations the fusion center
receives per slot in a network with N nodes sampling at a rate r (samples per slot). It is
also a measure of the energy spent by the network per slot. Since it has been assumed
that the observations are conditionally independent and identically distributed across
the sensors and over time, it is natural to ask how beneficial it is to have more nodes
sampling at a lower rate compared to fewer nodes sampling at a higher rate, when the
number of observations per slot is the same. With p = 0.0005, α = 0.01, and σ = 0.3636,
and f0 ∼ N (0, 1) and f1 ∼ N (1, 1), we present simulation results for two examples,

4As usual, N (a, v) denotes a normal distribution with mean a and variance v

ACM Transactions on Sensor Networks, Vol. 8, No. 2, Article 12, Publication date: March 2012.



12:24 P. Karumbu et al.

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0.01  0.015  0.02  0.025  0.03  0.035

M
ea

n 
D

et
ec

tio
n 

D
el

ay
 (s

lo
ts

)

Sampling rate, r (samples per slot)

NODM: Simulation
NODM: Approximation
NADM: Simulation

Fig. 15. Mean detection delay for N = 10 nodes is plotted against the sampling rate r for both NODM and
NADM (defined in Equation (24)). For NODM, an approximate analysis is also plotted. This was obtained
with the prior probability ρ = 0, p = 0.0005, probability of false alarm target α = 0.01, σ = 0.3636, and
with the sensor observations being N (0, 1) and N (1, 1), before and after the change, respectively.

the first one being Nr = 1/3 (the case of a heavily loaded network) and the second one
being Nr = 1/100 (the case of a lightly loaded network, Nr � σ ).

Figure 16 shows the plot of mean decision delay l(r)(1 − α − ρ) + 1
r min�α

E[K̃ − K]+
versus the number of sensors when Nr = 1/3. As N increases, the sampling rate
r = 1/(3N) decreases, and hence, the coarse sampling delay l(r)(1 − α) increases; this
can be seem to be approximately linear by analysis of the expression for l(r), given in
Appendix I. Also, as N increases, the decision maker gets more samples at the decision
instants, hence, the delay due to the decision maker 1

r min�α
E[K̃ − K]+ decreases (this

is evident from the right side of Figure 16). Figure 16 shows that in the region where
N is large (i.e., N � 20) or N is very small (i.e., N < 5), as N increases, the mean
decision delay increases. This is because as N increases in this region, the decrease in
delay due to the decision maker is smaller compared to the increase in delay due to
coarse sampling. However, in the region where N is moderate (i.e., for 5 � N < 20),
as N increases, the decrease in delay due to the decision maker is large compared to
the increase in delay due to coarse sampling. Hence, in this region, the mean decision
delay decreases with N. Therefore, we infer that when N × r = 1

3 , deploying 20 nodes
sampling at 1/60 samples per slot is optimal, when there is no network delay.

Figure 17 shows the mean detection delay (i.e., the network delay plus the decision
delay shown in Figure 16) versus the number of nodes N for a fixed N × r = 1/3.
As the the number of nodes N increases, the sampling rate r = 1/(3N) decreases.
For large N (and equivalently small r), as in the case of NODM with the Shiryaev
procedure, the network delay d(r) ≈ N

σ
as it requires N (independent) successes, (each

with probability σ ) in the random access network to transport a batch of N samples
(also, since the sampling rate r is small, one would expect that a batch is delivered
before a new batch is generated), and the decision maker requires just one batch of
N samples to stop (after the change occurs). Hence, for large N, the detection delay is
≈ l(r)(1 − α) + d(r)(1 − α) ≈ l(r)(1 − α) + N

σ
(1 − α). It is to be noted that for large N, to

achieve a false alarm probability of α, the decision maker requires Nα < N samples.
(The mean of the log-likelihood ratio (LLR) of received samples, after change, is the
KL divergence between pdfs f1 and f0, given by I( f1, f0) > 0. Hence, the posterior
probability—which is a function of LLR—increases with the the number of received
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Fig. 16. Mean decision delay of NODM procedure for N × r = 1/3 is plotted against the number of nodes
N. The plot is obtained with ρ = 0, p = 0.0005, α = 0.01, and with the sensor observations N (0, 1) and
N (1, 1), before and after the change, respectively. The components of the mean decision delay, that is, the
coarse sampling delay (1 − α)l(r) − ρl(r) and the decision maker delay 1

r min�α E[K̃ − K]+ are shown on the
right.
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Fig. 17. Mean detection delay for N × r = 1/3 is plotted against the number of nodes N. This was obtained
with ρ = 0, p = 0.0005, α = 0.01 σ = 0.3636, and with sensor observations N (0, 1) and N (1, 1), before and
after the change, respectively.

samples. Thus, to cross a threshold of γ (α), we need Nα samples). Thus, for large N,
in the NADM procedure, the detection delay is approximately l(r)(1 − α) + Nα

σ
(1 − α),

where Nα/σ is the mean network-delay to transport Nα samples. Thus, for large N,
the difference in the mean detection delay between NODM and NADM procedures is
approximately 1−α

σ
(N − Nα). Note that Nα depends only on α, and hence, the quantity

1−α
σ

(N − Nα) increases with N. This behaviour is in agreement with Figure 17. Also, as
N×r = 1/3, we expect the network delay to be very large (as 1/3 is close to σ = 0.3636),
and hence, having a single node is optimal, which is also evident from Figure 17.

It is also possible to find an example where the optimal number of nodes is greater
than 1. For example, this occurs in the previous setting for N×r = 0.01 (see Figure 18).
Note that having N = 10 sensors is optimal for the NADM procedure. The NODM
procedure makes the decision only when it receives a batch of N samples corresponding
to a sampling instant, whereas NADM procedure makes the decision at every time slot,
irrespective of whether it receives a sample in that time slot or not. Thus, the Bayesian
update that NADM does at every time slot makes it stop earlier than NODM.
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Fig. 18. Mean detection delay for N × r = 0.01 is plotted against the the number of nodes N. This was
obtained with ρ = 0, p = 0.0005, α = 0.01, and with sensor observations N (0, 1) and N (1, 1), before and
after the change, respectively.

7. CONCLUSIONS

In this work, we have considered the problem of minimizing the mean detection delay
in an event detection on a small extent ad hoc wireless sensor network. We provide
two ways of processing samples in the fusion center: (i) Network Oblivious (NODM)
processing and (ii) Network Aware (NADM) processing. We show that in the NODM
processing, under periodic sampling, the detection delay decouples into decision and
network delays. An important implication of this is that an optimal sequential change
detection algorithm can be used in the decision device, independently of the random
access network. We also formulate and solve the change detection problem in the NADM
setting, in which case the optimal decision maker needs to use the network state in
its optimal stopping rule. Also, we study the network delay involved in this problem
and show that it is important to operate at a particular sampling rate to achieve the
minimum detection delay.

APPENDIXES

APPENDIX I

PROOF. (THEOREM 1).

min
�α

E
[(

Ũ − T
)
I{T̃ �T }

] = min
�α

E
[(

Ũ − T̃ + T̃ − K
r

+ K
r

− T
)

I{T̃ �T }

]
= min

�α

{
E
[
(Ũ − T̃ )I{T̃ �T }

] + E
[(

K
r

− T
)

I{T̃ �T }

]
+ 1

r
E
[(

K̃ − K
)
I{T̃ �T }

]}
. (25)

Note that in Equation (25), the first term is the queueing delay, the second term is
the coarse sampling delay, and the third term is the decision delay (all delays being in
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slots). Consider the first term,

E
[
(Ũ − T̃ )I{T̃ �T }

] = E
[
(UK̃ − tK̃)I{T̃ �T }

]
=

∑
j≥0,b≥0,x≥0

P(T = j, K̃ = b, Db = x)x · I{ b
r � j}

=
∑

j≥0,b≥0,x≥0

P(T = j, K̃ = b)P (Db = x) x · I{ b
r � j},

where we have used the facts that (i) the decision process is based on only what the
packets carry and not on their arrival time, and (ii) the condition that sampling is done
periodically at a known rate r. Assuming the queueing system to be stationary, the
preceding can be written as

E
[
(Ũ − T̃ )I{T̃ �T }

]
=

⎛⎝∑
x≥0

P (D = x) x

⎞⎠∑
j,b

P(T = j, K̃ = b)I{ b
r � j}

= E
[
D
]
P(T̃ � T ).

Note that E[D] is a function of the sampling rate r and does not depend on the detection
policy.

Consider the second term of Equation (25),

E
[(

K
r

− T
)

I{T̃ ≥T }

]
= E

[(
K
r

− T
)

I{K̃≥K}

]
= E

[(
K
r

− T
)

I{K̃≥K,S0=1}

]
+ E

[(
K
r

− T
)

I{K̃≥K,S0=0}

]
.

For S0 = 1, we have T = 0 and K = 0. Hence,

E
[(

K
r

− T
)

I{T̃ ≥T }

]
= 0 + E0

[(
K
r

− T
)

I{K̃≥K}

]
where E0 [·] denote the expectation and P0 (·) the probability law when the initial state
is S0 = 0. Now,

E0

[(
K
r

− T
)

I{K̃≥K}

]
=

∞∑
b=1

∞∑
b̃=b

b/r∑
t=(b−1)/r+1

P0(T = t, K = b, K̃ = b̃) ·
(

b
r

− t
)

=
∞∑

b=1

∞∑
b̃=b

P0(K = b, K̃ = b̃)

·
⎡⎣ b/r∑

t=(b−1)/r+1

P0(T = t | K = b, K̃ = b̃) ·
(

b
r

− t
)⎤⎦ . (26)

We note that K̃ is independent of T , given K. Hence,

E0

[(
K
r

− T
)

I{K̃≥K}

]
=

∞∑
b=1

∞∑
b̃=b

P0(K = b, K̃ = b̃)

·
⎡⎣1/r−1∑

y=0

y · P0

(
T = b

r
− y | K = b

)⎤⎦ .
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We have

P0 (T = t | K = b) =
{

(1−ρ)(1−p)t−1 p
(1−ρ)(1−pr )b−1 pr

, for t s.t. b = �t · r�
0, otherwise.

Hence, for 0 ≤ y ≤ 1/r − 1,

P0

(
T = b

r
− y | K = b

)
= (1 − p)b/r−y−1 p

(1 − pr)b−1 pr
,

but (1 − pr) = (1 − p)1/r, hence,

P0

(
T = b

r
− y | K = b

)
= (1 − p)b/r−y−1 p

(1 − pr)b−1 pr

= (1 − p)1/r−y−1 p
1 − (1 − p)1/r .

It can be shown that
1/r−1∑

y=0

y · (1 − p)1/r−y−1 p
1 − (1 − p)1/r = 1

r
−

(
1
p

− 1
rpr

(1 − pr)
)

=: l(r).

Therefore, Equation (26) can be written as

E0

[(
K
r

− T
)

I{K̃≥K}

]
= l(r) · P0(K̃ ≥ K) = l(r) · (P(K̃ ≥ K) − ρ)

= l(r) · (1 − P(K̃ < K) − ρ).

Finally, we have

min
�α

E
[
(Ũ − T )I{T̃ ≥T }

]
= min

�α

{d(r)(1 − P(T̃ < T )) + l(r)P0(T̃ ≥ T ) + 1
r

E
[
(K̃ − K)+

]}
= min

�α

{(
d(r) + l(r)

) (
1 − P

(
T̃ < T

))
− ρ · l(r) + 1

r
E
[
(K̃ − K)+

]}
.

Note that in the preceding equation, the first term
(
d(r) + l(r)

)
(1 − P(T̃ < T )) is mini-

mum when P(T̃ < T ) = α. It follows that

min
�α

E
[
(Ũ − T )I{T̃ ≥T }

]
�

(
d(r) + l(r)

)
(1 − α) − ρ · l(r) + 1

r
min
�α

E
[
(K̃ − K)+

]
.

Also, since the optimal policy for the problem min�α
E[(K̃ − K)+] achieves (1 − P(T̃ <

T )) = α, we also have

(d(r) + l(r)) (1 − α) − ρ · l(r) + 1
r

min
�α

E
[
(K̃ − K)+

]
� min

�α

E
[
(Ũ − T )I{T̃ ≥T }

]
.

It follows that

min
�α

E
[
(Ũ − T )I{T̃ ≥T }

] = (
d(r) + l(r)

)
(1 − α) − ρ · l(r) + 1

r
min
�α

E
[
(K̃ − K)+

]
.
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We need 1 − α > ρ or α < 1 − ρ. If α > 1 − ρ, the optimal stopping is at t = 0. This
will yield the desired probability of false alarm and E[(Ũ − T )I{T̃ ≥T }] = 0.

APPENDIX II

PROOF. (THEOREM 2). The necessity of Nr < σ is clear. The sufficiency proof goes as
follows. Consider the FJQ-GPS system with every queue always containing a single
dummy packet that is served at low priority. Let us call this the saturated FJQ-GPS
system. When a queue becomes empty, the low-priority dummy packet contends for
service. If it receives service, then it immediately reappears and continues to contend
for service. If, while a dummy packet is in service, a regular packet arrives, then the
service of the dummy packet is preempted, and the regular packet starts contending.
It follows that the service rate applied to every queue (i.e., those with regular packets
or those with dummy packets) is always σ/N. Now, consider a virtual service process
of rate σ . In each slot, a service occurs with probability σ , and the service is applied
to any one of the queues with equal probability. Equivalently, each queue is served
by an independent Bernoulli process of rate σ/N. Considering only the services to the
regular packets at each queue, we have a GI/M/1 queue (here GI refers to a general
distribution with independent arrivals, M refers to a Markovian service process, and
1 refers to one server). Hence, the system has proper stationary delay, if and only if
r < σ/N. Also, it can be seen that the delays in the described system (with dummy
packets when a queue is empty) upperbound those in the original FJQ-GPS system.
Hence, the result follows.

APPENDIX III

Distribution of state noise N.
Let q = [λ, b, δ, w, r]. Note that P

(
Mk = m

⏐⏐Qk = q,�k = θ
) = P

(
Mk = m

⏐⏐Qk = q
)

and is given by

P
(
Mk = 0

⏐⏐Qk = q
) =

{
1 if φN(q) = 0
1 − σ if φN(q) > 0 ,

P
(
Mk = m

⏐⏐Qk = q
) =

{
0 if φN(q) = 0

σ
φN(q) if φL(m) (q) > 0, m = 1, 2, 3, . . . , N,

where φN(q) and φL(m) (q) are obtained from Equations (9) and (8).
The distribution function P(Ok = o|Qk = q,�k = θ) = P(Ok = o|Qk = q,�k = θ ) is

given by

P
(
Ok = o

⏐⏐Qk = q,�k = 0
) =

{ 1 − p if o = 0
p if o = 1,
0 otherwise,

P
(
Ok = o

⏐⏐Qk = q,�k = 1
) =

{
1 if o = 0
0 otherwise.

APPENDIX IV

PROOF (LEMMA 1).
Let q = [λ, b, δ, w, r]. From Equation (17),

�k := P
(
T � k

⏐⏐Ik−1, Qk = q, Yk
)

= P
(
T � k − δ

⏐⏐Ik−1, Qk = q, Yk
) + P

(
k − δ < T � k

⏐⏐Ik−1, Qk = q, Yk
)
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= P
(
T � k − δ

⏐⏐Ik−1, Qk = q, Yk
) + P

(
T > k − δ

⏐⏐Ik−1, Qk = q, Yk
)

· P
(
T � k

⏐⏐T > k − δ, Ik−1, Qk = q, Yk
)
,

= �k + (1 − �k) · P
(
T � k

⏐⏐T > k − δ, Ik−1, Qk = q, Yk
)
,

= �k + (1 − �k) · P (k − δ < T � k) P
(
Ik−1, Qk = q, Yk

⏐⏐k − δ < T � k
)

P (T > k − δ) P
(
Ik−1, Qk = q, Yk

⏐⏐T > k − δ
)

= �k + (1 − �k) · P (k − δ < T � k)
P (T > k − δ)

(27)

= �k + (1 − �k)
(
1 − (1 − p)δ

)
. (28)

Equation (27) is justified as follows. Note that

P
(
Ik−1, Qk = q, Yk

⏐⏐k − δ < T � k
)

= P
(
Q[0:k−1], Qk = q, X[1:Bk−1], {X(i)

Bk
: R(i)

k = 1}, u[0:k−1]
⏐⏐k − δ < T � k

)
= P

(
Q[0:k−1], Qk = q

⏐⏐k − δ < T � k
)

· P
(
X[1:Bk−1], {X(i)

Bk
: R(i)

k = 1}⏐⏐k − δ < T � k, Q[0:k−1], Qk = q
)

· P
(
u[0:k−1]

⏐⏐k − δ < T � k, Q[0:k−1], Qk = q, X[1:Bk−1], {X(i)
Bk

: R(i)
k = 1}

)
= P

(
Q[0:k−1], Qk = q

) · P
(
X[1:Bk−1], {X(i)

Bk
: R(i)

k = 1}⏐⏐k − δ < T , Q[0:k−1], Qk = q
)

· P
(
u[0:k−1]

⏐⏐Q[0:k−1], Qk = q, X[1:Bk−1], {X(i)
Bk

: R(i)
k = 1}

)
= P

(
Q[0:k−1], Qk = q

⏐⏐T > k − δ
)

· P
(
X[1:Bk−1], {X(i)

Bk
: R(i)

k = 1}⏐⏐T > k − δ, Q[0:k−1], Qk = q
)

· P
(
u[0:k−1]

⏐⏐⏐⏐T > k − δ, Q[0:k−1], Qk = q, X[1:Bk−1], {X(i)
Bk

: R(i)
k = 1}

)
= P

(
Ik−1, Qk = q, Yk

⏐⏐T > k − δ
)
.

We use the following facts in the preceding justification: i) the evolution of the queueing
system Qk is independent of the change point T , (ii) whenever T > k−δ, the distribution
of any sample X(i)

h , h � Bk is f0; and iii) the control uk = μ̃(Ik).

APPENDIX V

Recursive computation of �k
At time k, based on the index of the node that successfully transmits a packet Mk,

the set of all sample paths � can be partitioned based on the following events.

E1,k :=
{
ω : Mk(ω) = 0 or Mk(ω) = j > 0, R( j)

k (ω) = 1
}

,

E2,k :=
{

ω : Mk(ω) = j > 0, R( j)
k (ω) = 0,

N∑
i=1

R(i)
k (ω) < N − 1

}
,
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E3,k :=
{

ω : Mk(ω) = j > 0, R( j)
k (ω) = 0,

N∑
i=1

R(i)
k (ω) = N − 1

}
,

that is, � = E1,k ∪ E2,k ∪ E3,k. We note that the preceding events can also be described
by using Qk and Qk+1 in the following manner.

E1,k = {
ω : Wk+1(ω) = Wk(ω), Rk+1(ω) = Rk(ω)

}⋃{
ω : Wk+1(ω) = Wk(ω) + e j, Rk+1(ω) = Rk(ω)

}
,

E2,k = {
ω : Wk+1(ω) = Wk(ω), Rk+1(ω) = Rk(ω) + e j

}
,

E3,k =
{

ω :
N∑

i=1

R(i)
k (ω) = N − 1,∀i, W (i)

k+1(ω) = (W (i)
k (ω) − 1)+, R(i)

k+1(ω) = 1{W (i)
k >0}

}
.

Here, events E1,k and E2,k represent case Bk+1 = Bk, and event E3,k represents case
Bk+1 = Bk + 1 (i.e., only if event E3,k occurs, then the batch index is incremented). We
are interested in obtaining �k+1 from [Qk,�k] and Zk+1. We show that at time k + 1,
the statistic �k+1 (after having observed Zk+1) can be computed in a recursive manner
using �k and Qk. Using Lemma 5.1 (using Equation (19)), we compute �k+1 from �k+1.

�k+1 = P
(
�̃k+1 = 1 | Ik+1

)
=

3∑
c=1

P
(
�̃k+1 = 1, Ec,k | Ik+1

)
=

3∑
c=1

P
(
�̃k+1 = 1 | Ec,k, Ik+1

)
1Ec,k (∵ Ec,k is Ik+1 measurable).

Case Mk = 0 or Mk = j > 0, R( j)
k = 1.

�k+1

= P
(
�k+1 = 1 | E1,k, Ik+1

)
= P

(
�k+1 = 1 | E1,k, Ik, Qk+1 = q′)

= P
(
�k+1 = 1 | E1,k, Ik

) · fQk+1|�k+1,E1,k,Ik(q
′|1, E1,k, Ik)

f
Qk+1

⏐⏐E1,k,Ik
(q′|E1,k, Ik)

(by Bayes rule)

= P
(
�k+1 = 1 | E1,k, Ik

)
(Qk+1 is independent of �k+1)

= P (�k = 0,�k+1 = 1 | Ik) + P (�k = 1,�k+1 = 1 | Ik)
= (1 − �k)p + �k.

Case Mk = j > 0, R( j)
k = 0,

∑N
i=1 R(i)

k < N − 1. In this case, the sample X( j)
Bk

is
successfully transmitted and is passed on to the decision maker. The decision maker
receives just this sample and computes �k+1. We compute �k+1 from �k and then use
Lemma 5.1 using Equation (19)) to compute �k+1 from �k+1.

�k+1

= P
(
�̃k+1 = 1 | E2,k, Ik+1

)
= P

(
�̃k+1 = 1 | E2,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
= P

(
�̃k = 0, �̃k+1 = 1 | E2,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
+ P

(
�̃k = 1, �̃k+1 = 1 | E2,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
.
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Since we consider the case in which the fusion center receives a sample at time k + 1
and Bk+1 = Bk, 
k+1 = 
k + 1, and hence, the state �̃k+1 = �k+1−
k+1 = �k−
k = �̃k.
Thus, in this case, �k+1 can be written as

�k+1

= P
(
�̃k = 1, �̃k+1 = 1 | E2,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
(a)= P

(
�̃k = 1, �̃k+1 = 1 | E2,k, Ik

) · P
(
Qk+1 = q′ | �̃k = 1, �̃k+1 = 1, E2,k, Ik

)
P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1 (y|E2,k, Ik, q′)

· fYk+1|�̃k,�̃k+1,E2,k,Ik,Qk+1
(y | 1, 1, E2,k, q′, Ik)

(b)= P
(
�̃k = 1, �̃k+1 = 1 | E2,k, Ik

) · P(Qk+1 = q′|E2,k, Ik) · fYk+1|�̃k
(y | 1)

P(Qk+1 = q′|E2,k, Ik) · fYk+1|E2,k,Ik,Qk+1 (y|E2,k, Ik, q′)

(c)= P
(
�̃k = 1, �̃k+1 = 1 | E2,k, Ik

) · f1(y)

P
(
�̃k = 0 | E2,k, Ik, Qk+1

) · fYk+1|�̃k
(y|0) + P

(
�̃k = 1 | E2,k, Ik, Qk+1

) · fYk+1|�̃k
(y|1)

(d)= �k f1(y)
(1 − �k) f0(y) + �k f1(y)

.

We explain the steps (a), (b), (c), and (d) below.

(a) By Bayes rule, for events A, B, C, D, E, and F, we have

P (AB | CDEF) = P (AB | CD) P (E | ABCD) P (F | ABCDE)
P (E | CD) P (F | CDE)

.

(b) Qk+1 is independent of �̃k, �̃k+1. Also, given �̃k, Yk+1 is independent of
�̃k+1, E2,k, Ik, Qk+1.

(c) For any events A, B, and a continuous random variable Y , the conditional density
function fY |A(y|A) = P (B | A) fY |AB(y|AB) + P (Bc | A) fY |ABc (y|ABc). Also, given �̃k,
Yk+1 is independent of E2,k, Ik, Qk+1.

(d) E2,k is [Ik, Qk+1] measurable, and hence, given [Ik, Qk+1], �̃k is independent of E2,k.

Case Mk = j > 0, R( j)
k = 0,

∑N
i=1 R(i)

k = N − 1. In this case, at time k+ 1, the decision
maker receives the last sample of batch Bk, X( j)

Bk
(that is successfully transmitted during

slot k) and the samples of batch Bk + 1, if any, that are queued in the sequencer buffer.
We compute �k+1 from �k and use Lemma 1 (using Equation (19)) to compute �k+1

from �k+1. In this case, the decision maker receives n := ∑N
i=1 1{W (i)

k >0} samples of batch
Bk + 1. Also, note that n is Ik measurable.

�k+1 = P
(
�̃k+1 = 1 | E3,k, Ik+1

)
= P

(
�̃k+1 = 1 | E3,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
= P

(
�̃k = 0, �̃k+1 = 1 | E3,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
+ P

(
�̃k = 1, �̃k+1 = 1 | E3,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
.

Since, we consider the case Bk+1 = Bk + 1, 
k+1 = 
k + 1 − 1/r, and hence, the state
�̃k+1 = �k+1−
k+1 = �k−
k+1/r.
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Let y = [y0, y1, . . . , yn]. Consider
P
(
�̃k = θ̃ , �̃k+1 = 1 | E3,k, Ik, [Qk+1, Yk+1] = [q′, y]

)
(a)= P

(
�̃k = θ̃ , �̃k+1 = 1 | E3,k, Ik

) · P
(
Qk+1 = q′ | �̃k = θ̃ , �̃k+1 = 1, E3,k, Ik

)
P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1 (y|E3,k, Ik, q′)

· fYk+1|�̃k,�̃k+1,E3,k,Ik,Qk+1
(y | θ̃ , 1, E3,k, q′, Ik)

(b)= P
(
�̃k = θ̃ , �̃k+1 = 1 | E3,k, Ik

) · P(Qk+1 = q′|E3,k, Ik) · fθ̃ (y0)
∏n

i=1 f1(yi)
P(Qk+1 = q′|E3,k, Ik) · fYk+1|E3,k,Ik,Qk+1 (y|E3,k, Ik, q′)

(c)= P
(
�̃k = θ̃ | E3,k, Ik

) · P
(
�̃k+1 = 1 | �̃k = θ̃ , E3,k, Ik

) · fθ̃ (y0)
∏n

i=1 f1(yi)∑1
θ̃ ′=0

∑1
θ̃ ′′=0 P

(
�̃k = θ̃ ′, �̃k+1 = θ̃ ′′, | E3,k, Ik, Qk+1

) · fYk+1|�̃k,�̃k+1E3,k,Ik,Qk+1
(y|θ̃ ′, θ̃ ′′, E3,k, Ik, q′)

.

We explain the steps (a), (b), and (c) below.

(a) By Bayes rule, for events A, B, C, D, E, and F, we have

P (AB | CDEF) = P (AB | CD) P (E | ABCD) P (F | ABCDE)
P (E | CD) P (F | CDE)

.

(b) Qk+1 is independent of �̃k, �̃k+1. Also, given �̃k, Yk+1,0 is independent of
�̃k+1, E3,k, Ik, Qk+1, and given �̃k+1, Yk+1,i is independent of �̃k, E3,k, Ik, Qk+1.
It is to be noted that given the state of nature, the sensor measurements
Yk+1,0, Yk+1,1, . . . , Yk+1,n are conditionally independent.

(c) For any events A, B, and a continuous random variable Y , the conditional density
function fY |A(y|A) = P (B | A) fY |AB(y|AB) + P (Bc | A) fY |ABc (y|ABc). Also, given �̃k,
Yk+1 is independent of E3,k, Ik, Qk+1.

It is to be noted that the event E3,k is [Ik, Qk+1] measurable, and hence, given [Ik, Qk+1],
�̃k is independent of E3,k. Thus, in this case,

�k+1 = (1 − �k)pr f0(y0)
∏n

i=1 f1(yi) + �k f1(y0)
∏n

i=1 f1(yi)
(1 − �k)(1 − pr) f0(y0)

∏n
i=1 f0(yi) + (1 − �k)pr f0(y0)

∏n
i=1 f1(yi) + �k f1(y0)

∏n
i=1 f1(yi)

.

Thus, using Lemma 5.1 (using Equation (19)), we have

�k+1 = �k+1 + (1 − �k+1)(1 − (1 − p)
k+1 )
=: φ�(�k, Zk+1) + (

1 − φ�(�k, Zk+1)
)

(1 − (1 − p)
k+1 )

= φ�

(
�k − (1 − (1 − p)
k)

(1 − p)
k
, Zk+1

)
+

(
1 − φ�

(
�k − (1 − (1 − p)
k)

(1 − p)
k
, Zk+1

))
(1 − (1 − p)
k+1 )

=: φ�

(
[Qk,�k], Zk+1

)
.

APPENDIX VI

Structure of τ ∗.
We use the following Lemma to show that J∗(q, π ) is concave in π .

LEMMA 2. If f : [0, 1] → R is concave, then the function h : [0, 1] → R, defined by

h(y) = Eφ(x)

[
f
(

y · φ2(x) + (1 − y)pr · φ1(x)
y · φ2(x) + (1 − y)pr · φ1(x) + (1 − y)(1 − pr) · φ0(x)

)]
,

is concave for each x, where φ(x) = y · φ2(x) + (1 − y)pr · φ1(x) + (1 − y)(1 − pr) · φ0(x),
0 < pr < 1, and φ0(x), φ1(x), and φ2(x) are pdfs on X.
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PROOF. See Appendix I of Premkumar and Kumar [2008].
Note that in the finite H-horizon (truncated version of Equation (21)), we note from

value iteration that the cost-to-go function for a given q JH
H ([q, π ]) = 1−π is concave in

π . Hence, by Lemma 2, we see that for any given q, the cost-to-go functions JH
H−1([q, π ]),

JH
H−2([q, π ]), . . . , JH

0 ([q, π ]) are concave in π . Hence for 0 ≤ λ ≤ 1,

J∗([q, π ]) = lim
H→∞

JH
0 ([q, π ])

J∗([q, λπ1 + (1 − λ)π2]) = lim
H→∞

JH
0

(
[q, λπ1 + (1 − λ)π2]

)
≥ lim

H→∞
λJH

0 ([q, π1]) + lim
H→∞

(1 − λ)JH
0 ([q, π2])

= λJ∗([q, π1]) + (1 − λ)J∗([q, π2]).

It follows that for any given q, J∗([q, π ]) is concave in π .

Define the map ξ : Q×[0, 1] → R+ as ξ ([q, π ]) := 1−π and the map κ : Q×[0, 1] → R+,
as κ([q, π ]) := c · π + AJ∗ ([q, π ]) = c · π + E[J∗([Qk+1, φ�(νk, Zk+1)])

⏐⏐νk = [q, π ]]. Note
that ξ ([q, 1]) = 0, κ([q, 1]) = c, ξ ([q, 0]) = 1 and

κ([q, 0])
= E[J∗([Qk+1, φ�(νk, Zk+1)])|νk = [q, 0]]
(2)= E[J∗([φQ(Qk, Mk), φ�(νk, Zk+1)])|νk = [q, 0]]

=
N∑

m=0

E[J∗([φQ(q, m), φ�(νk, Zk+1)])|Mk = m, νk = [q, 0]]P (Mk = m|νk = [q, 0])

(4)
�

N∑
m=0

J∗([φQ(q, m), E[φ�(νk, Zk+1)|Mk = m, νk = [q, 0]]])P(Mk = m|νk = [q, 0])

=
N∑

m=0

J∗([φQ(q, m), p)P
(
Mk = m

⏐⏐νk = [q, 0]
)

(6)
�

N∑
m=0

(1 − p) · P
(
Mk = m

⏐⏐νk = [q, 0]
)

= 1 − p < 1,

where in the preceding derivation, we use the evolution of Qk in step 2, the Jensen’s
inequality (as for any given q, J∗(q, π ) is concave in π ) in step 4, and the inequality
J∗(q, π ) � 1 − π in step 6.

Note that κ([q, 1]) − ξ ([q, 1]) > 0 and κ([q, 0]) − ξ ([q, 0]) < 0. Also, for a fixed q, the
function κ([q, π ]) − ξ ([q, π ]) is concave in π . Hence, by the intermediate value theorem,
for a fixed q, there exists γ (q) ∈ [0, 1] such that κ([q, γ ]) = ξ ([q, γ ]). This γ is unique
as κ([q, π ]) = ξ ([q, π ]) for at most two values of π . If in the interval [0, 1] there are two
distinct values of π for which κ([q, π ]) = ξ ([q, π ]), then the signs of κ([q, 0]) − ξ ([q, 0])
and κ([q, 1]) − ξ ([q, 1]) should be the same. Hence,

τ ∗ = inf
{
k : �k � γ (Qk)

}
,

where the threshold γ (q) is given by c · γ (q) + AJ∗ ([q, γ (q)]) = 1 − γ (q).
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